Article contents
Growth of width-controlled nanowires MnO2 from mesoporous carbon and investigation of their properties
Published online by Cambridge University Press: 03 March 2011
Abstract
One-dimensional α-MnO2 nanowires with a controlled width of 10–20 nm have been developed by means of ultrasonic waves from mesoporous carbon using KMnO4 as the precursor. The formation mechanism has been proposed based on the results. A peak around 100 K was detected in the temperature-dependence of magnetization curve, indicating the ferromagnetic state in nanocomposite mesoporous carbon-MnO2, which is in agreement with the transition temperature found from the magnetization versus applied magnetic field curve. The magnetization versus temperature curve of the obtained MnO2 nanowires showed a magnetic transition at about 50 K, illustrating that a parasitic ferromagnetic component is composed on the antiferromagnetic structure of MnO2. The advantage of the method reported here is that phase-controlled synthesis of α-MnO2 nanowires was implemented regardless of pH, temperature, and types of ions in the reaction system. A major advantage of this approach is the efficient, fast, and reproducible control of width and the facile strategy to synthesize nanowires MnO2, in addition to the high purity of the resultant material.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
REFERENCES
- 8
- Cited by