Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T05:09:37.949Z Has data issue: false hasContentIssue false

Growth of V2O3 thin films on a-plane (110) and c-plane (001) sapphire via pulsed-laser deposition

Published online by Cambridge University Press:  31 January 2011

B.S. Allimi
Affiliation:
Materials Science and Engineering Program and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06279
S.P. Alpay*
Affiliation:
Materials Science and Engineering Program and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06279
D. Goberman
Affiliation:
Materials Science and Engineering Program and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06279
T. Huang
Affiliation:
Department of Physics and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06279
J.I. Budnick
Affiliation:
Department of Physics and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06279
D.M. Pease
Affiliation:
Department of Physics and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06279
A.I. Frenkel
Affiliation:
Department of Physics, Yeshiva University, New York, New York 10016
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report the direct deposition of epitaxial 215-nm-thick vanadium sesquioxide (V2O3) films on a- and c-plane sapphire substrates from powder-pressed V2O3 targets via pulsed-laser deposition (PLD) in an evacuated deposition chamber devoid of O2. The films were characterized using x-ray diffraction (XRD), x-ray photoemission spectroscopy (XPS), x-ray absorption fine structure (XAFS) spectroscopy, and atomic force microscopy (AFM). XPS measurements confirmed that the stoichiometry of the powder was conserved in the films. XRD patterns together with XAFS measurements proved that V2O3 was epitaxial on the a-sapphire substrate with epitaxial relation (110)film//(110)substrate, and the results are consistent with the epitaxy on the c-plane substrate as well. The room-temperature resistivities of V2O3 films on a- and c-plane substrates were 1.49 × 10−4 and 3.00 × 10−5 Ω m, respectively. The higher resistivities of the films compared to bulk V2O3 might be attributed to thermal stresses resulting from difference in thermal expansion coefficients (TECs) of the films and the substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Imada, M., Fujimori, A.Tokura, Y.: Metal–insulator transitions. Rev. Mod. Phys. 70, 1039 1998Google Scholar
2McWhan, D.B.Remeika, J.P.: Metal–insulator transition in (V1−xCrx)2O3. Phys. Rev. B 2, 3734 1970Google Scholar
3Dernier, P.D.Marezio, M.: Crystal structure of the low-temperature antiferromagnetic phase of V2O3. Phys. Rev. B 2, 3771 1970CrossRefGoogle Scholar
4Elfimov, I.S., Saha-Dasgupta, T.Korotin, M.A.: Role of c-axis pairs in V2O3 from the band-structure point of view. Phys. Rev. B 68, 113105 2003Google Scholar
5Kotliar, G.: Driving the electron over the edge. Science 302, 67 2003CrossRefGoogle ScholarPubMed
6Park, J-H., Tjeng, L.H., Tanaka, A., Allen, J.W., Chen, C.T., Metcalf, P., Honig, J.M., de Groot, F.M.F.Sawatzky, G.A.: Spin and orbital occupation and phase transitions in V2O3. Phys. Rev. B 61, 11506 2000CrossRefGoogle Scholar
7Yethiraj, M.: Pure and doped vanadium sesquioxide: A brief experimental review. J. Solid State Chem. 88, 53 1990Google Scholar
8Limelette, P., Georges, A., Jérome, D., Wzietek, P., Metcalf, P.Honig, J.M.: Universality and critical behavior at the Mott transition. Science 302, 89 2003CrossRefGoogle ScholarPubMed
9Rogers, K.D., Coath, J.A.Lovell, M.C.: Characterization of epitaxially grown films of vanadium oxides. J. Appl. Phys. 70, 1412 1991CrossRefGoogle Scholar
10Schuler, H., Klimm, S., Weissmann, G., Renner, C.Horn, S.: Influence of strain on the electronic properties of epitaxial V2O3 thin films. Thin Solid Films 299, 119 1997CrossRefGoogle Scholar
11Piao, J., Takahashi, S.Kohiki, S.: Preparation and characterization of V2O3 powder and film. Jpn. J. Appl. Phys., Part 1 37, 6519 1998Google Scholar
12Yamaguchi, I., Manabe, T., Kumagai, T., Kondo, W.Mizuta, S.: Preparation of epitaxial V2O3 films on C-, A- and R-planes of α-Al2O3 substrates by coating-pyrolysis process. Thin Solid Films 366, 294 2000CrossRefGoogle Scholar
13Luo, Q., Guo, Q.L.Wang, E.G.: Thickness-dependent metal–insulator transition in V2O3 ultrathin films. Appl. Phys. Lett. 84, 2337 2004Google Scholar
14Sass, B., Tusche, C., Felsch, W., Quaas, N., Weismann, A.Wenderoth, M.: Structural and electronic properties of epitaxial V2O3 thin films. J. Phys.: Condens. Matter 16, 77 2004Google Scholar
15Yonezawa, S., Muraoka, Y., Ueda, Y.Hiroi, Z.: Epitaxial strain effects on the metal–insulator transition in V2O3 thin films. Solid State Commun. 129, 245 2004Google Scholar
16Autier-Laurent, S., Mercey, B., Chippaux, D., Limelette, P.Simon, C.: Strain-induced pressure effect in pulsed laser deposited thin films of the strongly correlated oxide V2O3. Phys. Rev. B 74, 195109 2006Google Scholar
17Piao, J., Takahashi, S.Kohiki, S.: Preparation of Cr-doped V2O3 films by sol-gel processing and their resistivity–temperature characteristics. J. Ceram. Soc. Jpn. 107, 375 1999CrossRefGoogle Scholar
18Rao, C.N.R.Raveau, B.: Transition Metal Oxides: Structure, Properties and Synthesis of Ceramic Oxides 2 ed.Wiley-VCH New York 1998Google Scholar
19Frenkel, A.I., Pease, D.M., Budnick, J.I., Metcalf, P., Stern, E.A., Shanthakumar, P.Huang, T.: Strain-induced bond buckling and its role in insulating properties of Cr-doped V2O3. Phys. Rev. Lett. 97, 195502 2006CrossRefGoogle ScholarPubMed
20Matthews, J.W.Blakeslee, A.E.: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 1974Google Scholar
21Misirlioglu, I.B., Vasiliev, A.L., Aindow, M., Alpay, S.P.Ramesh, R.: Threading dislocation generation in epitaxial (Ba,Sr) TiO3 films grown on (001) LaAlO3 by pulsed laser deposition. Appl. Phys. Lett. 84, 1742 2004Google Scholar
22Nag, N.K.Massoth, F.E.: ESCA and gravimetric reduction studies on V/Al2O3 and V/SiO2 catalysts. J. Catal. 124, 127 1990Google Scholar
23Werfel, A.F.Brummer, A.O.: Corundum structure oxides studied by XPS. Phys. Scr. 28, 92 1983Google Scholar
24Colton, R.J., Guzman, A.M.Rabalais, J.W.: Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy. J. Appl. Phys. 49, 409 1978Google Scholar
25Alpay, S.P., Nagarajan, V., Bendersky, L.A., Vaudin, M.D., Aggarwal, S., Ramesh, R.Roytburd, A.L.: Effect of the electrode layer on the polydomain structure of epitaxial PbZr0.2Ti0.8O3 thin films. J. Appl. Phys. 85, 3271 1999Google Scholar
26Ekert, L.J.Bradt, R.C.: Thermal expansion coefficient of corundum structure Ti2O3 and V2O3. J. Appl. Phys. 44, 3470 1973Google Scholar
27Campbell, W.J.Grain, C.: Thermal expansion of alpha alumina. U.S. Bureau of Mines Technical Report No. BM-RI-5757 (Bureau of Mines, College Park, MD, 1960 16Google Scholar
28Misirlioglu, I.B., Alpay, S.P., He, F.Wells, B.O.: Stress induced monoclinic phase in epitaxial BaTiO3 on MgO. J. Appl. Phys. 99, 104103 2006Google Scholar
29McWhan, D.B., Remeika, J.P., Rice, T.M., Brinkman, W.F., Maita, J.P.Menth, A.: Electronic specific heat of metallic Ti-doped V2O3. Phys. Rev. Lett. 27, 941 1971Google Scholar
30Frenkel, A.I., Stern, E.A.Chudnovsky, F.A.: Metal–insulator transition and local structure of V2O3. J. Phys. IV, Colloque C2 7, 1061 1997Google Scholar