Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T01:49:23.648Z Has data issue: false hasContentIssue false

The growth of silicon nitride crystalline films using microwave plasma enhanced chemical vapor deposition

Published online by Cambridge University Press:  03 March 2011

K.J. Grannen
Affiliation:
Northwestern University, Department of Materials Science and Engineering, Evanston, Illinois 60208
F. Xiong
Affiliation:
Northwestern University, Department of Materials Science and Engineering, Evanston, Illinois 60208
R.P.H. Chang
Affiliation:
Northwestern University, Department of Materials Science and Engineering, Evanston, Illinois 60208
Get access

Abstract

Crystalline thin films of silicon nitride have been grown on a variety of substrates by microwave plasma-enhanced chemical vapor deposition using N2, O2, and CH4 gases at a temperature of 800 °C. X-ray diffraction and Rutherford backscattering measurements indicate the deposits are stoichiometric silicon nitride with varying amounts of the α and β phases. Scanning electron microscopy imaging indicates β-Si3N4 possesses sixfold symmetry with particle sizes in the submicron range. In one experiment, the silicon necessary for growth comes from the single crystal silicon substrate due to etching/sputtering by the nitrogen plasma. The dependence of the grain size on the methane concentration is investigated. In another experiment, an organo-silicon source, methoxytrimethylsilane, is used to grow silicon nitride with controlled introduction of the silicon necessary for growth. Thin crystalline films are deposited at rates of 0.1 μm/h as determined by profilometry. A growth mechanism for both cases is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lange, H., Wotting, G., and Winter, G., Angew. Chem. Int. Ed. Engl. 30, 1579 (1991).CrossRefGoogle Scholar
2Gupta, M., Rathi, V. K., Thangaraj, R., Agnihotri, O. P., and Chari, K. S., Thin Solid Films 204, 77 (1991).CrossRefGoogle Scholar
3Lee, J. Y-M., Sooriakumar, K., and Dange, M. M., Thin Solid Films 203, 275 (1991).CrossRefGoogle Scholar
4Ishizaki, K., Yumoto, S., and Tanaka, K., J. Mater. Sci. 23, 1813 (1988).CrossRefGoogle Scholar
5Jong, B. W., Slavens, G. J., and Traut, D. E., J. Mater. Sci. 27, 6086 (1992).CrossRefGoogle Scholar
6Ekelund, M. and Forslund, B., J. Mater. Chem. 2, 1079 (1992).CrossRefGoogle Scholar
7Zhang, S-C. and Cannon, W. R., J. Am. Ceram. Soc. 67, 691 (1984).CrossRefGoogle Scholar
8Ekelund, M. and Forslund, B., J. Am. Ceram. Soc. 75, 532 (1992).CrossRefGoogle Scholar
9Durham, S. J. P., Shanker, K., and Drew, R. A. L., J. Am. Ceram. Soc. 74, 37 (1991).CrossRefGoogle Scholar
10Cho, Y. W. and Charles, J. A., Mater. Sci. Technol. 7, 289 (1991).CrossRefGoogle Scholar
11Durham, S. J. P., Shanker, K., and Drew, R. A. L., Can. Metall. Quart. 30, 39 (1991).CrossRefGoogle Scholar
12Mazdiyasni, K. S. and Cooke, C. M., J. Am. Ceram. Soc. 56, 628 (1973).CrossRefGoogle Scholar
13Hirai, T. and Hayashi, S., Comm. Am. Ceram. Soc, C–88, June (1981).Google Scholar
14Motojima, S., Iwamori, N., and Hattori, T., J. Mater. Sci. 21, 3836 (1986).CrossRefGoogle Scholar
15Lee, W. Y., Strife, J. R., and Veltri, R. D., J. Am. Ceram. Soc. 75, 2200 (1992).CrossRefGoogle Scholar
16Gomez-Aleixandre, C., Sanchez-Garrido, O., Martinez-Duart, J. M., and Albella, J. M., J. Mater. Sci. 26, 4683 (1991).CrossRefGoogle Scholar
17Endler, I., Leonhardt, A., Schonherr, M., and Wolf, E., J. Mater. Sci. 26, 782 (1991).CrossRefGoogle Scholar
18Meilunas, R., Wong, M. S., Ong, T. P., and Chang, R. P. H., in Laser and Particle-Beam Modification of Chemical Processes on Surfaces, edited by Johnson, A. W., Loper, G. L., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 129, Pittsburgh, PA, 1989), p. 533.Google Scholar
19Lartigue, J. F., Ducarroir, M., and Armas, B., J. Mater. Sci. 19, 3079 (1984).CrossRefGoogle Scholar