Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T17:41:21.208Z Has data issue: false hasContentIssue false

Growth of diamond films on copper

Published online by Cambridge University Press:  03 March 2011

M. L. Hartsell
Affiliation:
Kobe Steel USA inc., P.O. Box 13608, 79 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709
L. S. Piano
Affiliation:
Kobe Steel USA inc., P.O. Box 13608, 79 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709
Get access

Extract

Copper and diamond both have cubic crystal structures and similar lattice constants, making Cu an excellent candidate substrate for the heteroepitaxial growth of electronic device quality diamond. In this study a Cu substrate preparation method was developed to obtain large-area, free-standing polycrystalline diamond films. Concurrently, a statistically designed experiment was used to maximize the diamond film quality and resulted in (111) and (100) faceted films of quality comparable to or better than those grown on Si. The diamond films were analyzed by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1The Properties ofDiamond, edited by Field, J. E. (Academic Press, New York, 1979).Google Scholar
2Geis, M. W., Efremow, N. N., and Rathman, D. D., J. Vac. Sci. Technol. A 6, 1953 (1988).CrossRefGoogle Scholar
3Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).CrossRefGoogle Scholar
4Gildenblat, G. S., Grot, S. A., and Badzian, A., Proc. IEEE 79, 647 (1991).CrossRefGoogle Scholar
5Prins, J. F. and Gaigher, H. L., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST–2, Pittsburgh, PA, 1991), pp. 561566.Google Scholar
6Pickett, W. E., Pederson, M. R., Jackson, K. A., and Erwin, S. C., Mater. Sci. Eng. B14, 87 (1992).CrossRefGoogle Scholar
7Hartsell, M. L., unpublished.Google Scholar
8Denatale, J. F., Flintoff, J. F., and Harker, A. B., J. Mater. Sci. 27, 553 (1992).CrossRefGoogle Scholar
9Lee, S-T., Chen, S., Agostinelli, J., Braunstein, G., Huang, L. J., and Lau, W. M., Appl. Phys. Lett. 60, 2213 (1992).CrossRefGoogle Scholar
10Ong, T. P., Xiong, F., Chang, R. P. H., and White, C. W., Appl. Phys. Lett. 60, 2083 (1992).CrossRefGoogle Scholar
11Narayan, J. and Chen, X., J. Appl. Phys. 71, 3795 (1992).CrossRefGoogle Scholar
12Doehlert, D. H., Tabor, A. M., and Criste, C. R., computer code STRATEGYTM (The Experiment Strategies Foundation, Seattle, WA, 1991).Google Scholar
13van der Drift, A., Philips Res. Rep. 22, 267 (1967). In this paper, the word “textured” is used in the most general sense, and does not refer necessarily to crystallographic texture. This is the same convention used by van der Drift.Google Scholar
14Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Phys. Rev. B 38, 4067 (1988).CrossRefGoogle Scholar
15Belton, D. N. and Schmieg, S. J., Surf. Sci. 233, 131 (1990).CrossRefGoogle Scholar
16Stoner, B. R., Ma, G-H. M., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
17Shih, H. C., Sung, C. P., Tang, Y. S., and Chen, J. G., Surf. Coat. Technol. 52, 105 (1992).CrossRefGoogle Scholar
18Williams, B. E. and Glass, J. T., J. Mater. Res. 4, 373 (1989).CrossRefGoogle Scholar
19Private communications with Scott Wolter, NCSU, Raleigh, NC (1992).Google Scholar
20Harris, S. J., Belton, D. N., Weiner, A. M., and Schmieg, S. J., J. Appl. Phys. 66, 5353 (1989).CrossRefGoogle Scholar
21Angus, J. C., Li, Z., Sunkara, M., Gat, R., Anderson, A. B., Mehandru, S. P., and Geis, M. W., in Diamond Materials, edited by Purdes, A. J., Angus, J. C., Davis, R. F., Meyerson, B. M., Spear, K. E., and Yoder, M., Proc. 2nd Int. Symp. on Diamond Materials, held as part of the 179th Meeting of The Electrochemical Society in Washington, D. C., May 5–10, 1991 (The Electrochemical Society, Pennington, NJ, 1991), Vol. 91–8, pp. 125141.Google Scholar
22Yang, P. C., Zhu, W., and Glass, J. T., J. Mater. Res. 8, 1773 (1993).CrossRefGoogle Scholar
23Clausing, R. E., Heatherly, L., Specht, E. D., and More, K. L., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Proc. NDST–2, Pittsburgh, PA, 1991), pp. 575580.Google Scholar
24Wild, C., Koidl, P., Herres, N., Müller-Sebert, W., and Echermann, T., in Diamond Materials, edited by Purdes, A. J., Angus, J. C., Davis, R. F., Meyerson, B. M., Spear, K. E., and Yoder, M., Proc. 2nd Int. Symp. on Diamond Materials, held as part of the 179th Meeting of The Electrochemical Society in Washington, D. C., May 5–10, 1991 (The Electrochemical Society, Pennington, NJ, 1991), Vol. 91–8, pp. 224239.Google Scholar
25Sato, Y. and Kamo, M., Surf. Coat. Technol. 39/40, 183 (1989).CrossRefGoogle Scholar