Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T19:42:06.417Z Has data issue: false hasContentIssue false

The growth of decagonal Al–Co–Ni single crystals as a function of chemical composition

Published online by Cambridge University Press:  31 January 2011

B. Zhang
Affiliation:
Laboratory of Crystallography, ETH Zentrum, CH-8092 Zurich, Switzerland
M. Estermann
Affiliation:
Laboratory of Crystallography, ETH Zentrum, CH-8092 Zurich, Switzerland
W. Steurer
Affiliation:
Laboratory of Crystallography, ETH Zentrum, CH-8092 Zurich, Switzerland
Get access

Abstract

Decaprismatic single crystals taken from a series of alloys of nominal compositions within Al65–77Co3–22Ni3–22 have been studied by means of x-ray diffraction techniques. The substitution of Co by Ni in increasing amounts changes the (pseudo)decagonal diffraction patterns drastically and indicates structural changes which range from a single-crystalline approximant via orientationally ordered nanodomain structures and quasiperiodic phases with different types of ordering phenomena, to a basic decagonal phase. A quantum phase diagram analysis shows a clear separation of the stability regions of the ternary systems described in this study and other decagonal phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsai, A. P., Inoue, A., and Masumoto, T., Mater. Trans. JIM 30, 463 (1989).CrossRefGoogle Scholar
2.Kek, S., Thesis, University of Stuttgart, Germany (1991).Google Scholar
3.Hiraga, K., Lincoln, F. J., and Sun, W., Mater. Trans. JIM 32, 308 (1991).CrossRefGoogle Scholar
4.Hiraga, K., Sun, W., and Yamamoto, A., Mater. Trans. JIM 35, 657 (1994).CrossRefGoogle Scholar
5.Edagawa, K., Ichihara, M., Suzuki, K., and Takeuchi, S., Philos. Mag. Lett. 66, 19 (1992).CrossRefGoogle Scholar
6.Edagawa, K., Sawa, H., and Takeuchi, S., Philos. Mag. Lett. 69, 227 (1994).CrossRefGoogle Scholar
7.Edagawa, K., Tamaru, H., Yamaguchi, S., Suzuki, K., and Takeuchi, S., Phys. Rev. B 50, 12413 (1994).CrossRefGoogle Scholar
8.Grushko, B. and Urban, K., Philos. Mag. B 70, 1063 (1994).CrossRefGoogle Scholar
9.Ritsch, S., Beeli, C., Nissen, H-U., and Lück, R., Philos. Mag. A 71, 671 (1995).CrossRefGoogle Scholar
10.Yamamoto, A., Kato, K., Shibuya, T., and Takeuchi, S., Phys. Rev. Lett. 65, 1603 (1990).CrossRefGoogle Scholar
11.Steurer, W., Haibach, T., Zhang, B., Kek, S., and Lück, R., Acta Crystallogr. B 49, 661 (1993).CrossRefGoogle Scholar
12.Zhang, B., Gramlich, V., and Steurer, W., Z. Kristallogr. 210, 498 (1995).CrossRefGoogle Scholar
13.Kalning, M., Kek, S., Burandt, B., Press, W., and Steurer, W., J. Phys.: Cond. Mat. 6, 6177 (1994).Google Scholar
14.Kalning, M., Press, W., and Kek, S., Philos. Mag. Lett. 71, 341 (1995).CrossRefGoogle Scholar
15.Raynor, G. V., Progress Metal Physics 1, 1 (1949).CrossRefGoogle Scholar
16.Rabe, K. M., J. Alloys and Compounds 197, 131 (1993).CrossRefGoogle Scholar
17.Rabe, K. M., Kortan, A. R., Phillips, J. C., and Villars, P., Phys. Rev. B 43, 6280 (1991).CrossRefGoogle Scholar
18.Rabe, K. M., Phillips, J. C., Villars, P., and Brown, I. D., Phys. Rev. B 45, 7650 (1992).CrossRefGoogle Scholar
19.Tartas, J., and Knystautas, E. J., J. Mater. Res. 6, 1219 (1991).CrossRefGoogle Scholar
20.Villars, P. and Hulliger, F. J., J. Less-Com. Met. 132, 289 (1987).CrossRefGoogle Scholar