Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T14:38:32.087Z Has data issue: false hasContentIssue false

Growth of aligned multiwalled carbon nanotubes on bulk copper substrates by chemical vapor deposition

Published online by Cambridge University Press:  23 February 2011

Ge Li*
Affiliation:
Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
Supriya Chakrabarti
Affiliation:
Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
Mark Schulz
Affiliation:
Department of Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0072
Vesselin Shanov*
Affiliation:
Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
*
Get access

Abstract

Successful growth of vertically aligned carbon nanotube (CNT) arrays on copper substrate by thermal chemical vapor deposition is reported in this paper. The effects of Ti, Ni, and Ni–Cr intermediate layers have been studied to eliminate cracking of the copper surface during the synthesis of CNTs. It was found that these intermediate layers play a critical role in achieving vertical alignment of CNTs on copper substrates. The effects of other reaction parameters such as flow rate of ethylene, concentration of water vapor, and deposition temperature have also been studied. Scanning electron microscopy, transmission electron microscopy, and micro-Raman spectroscopy were used to evaluate the quality and nature of the CNT formed.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kordás, K., Tóth, G., Moilanen, P., Kumpumaäki, M., Vaähaäkangas, J., Uusimaäki, A., Vajtaia, R. and Ajayan, P.M.: Chip cooling with integrated carbon nanotube microfin architectures. Appl. Phys. Lett. 90, 123105 (2007)CrossRefGoogle Scholar
2Masarapu, C. and Wei, B.: Direct growth of aligned multiwalled carbon nanotubes on treated stainless street substrates. Langmuir 23, 9046 (2007)CrossRefGoogle Scholar
3Chai, Y., Gong, J., Zhang, K., Philip, C., Chan, H. and Yuen, F.: Flexible transfer to aligned carbon nanotube films for integration at lower temperature. Nanotechnology 18, 5 (2007)CrossRefGoogle Scholar
4Kumar, A., Pushparaj, V.L., Kar, S., Nalamasu, O., Ajayan, P.M. and Baskarana, R.: Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl. Phys. Lett. 89, 163120 (2006)CrossRefGoogle Scholar
5Yin, K.B., Xia, Y.D., Chan, C.Y., Zhang, W.Q., Wang, Q.J., Zhao, X.N., Li, A.D., Liu, Z.G., Bayes, M.W. and Yee, K.W.: The kinetics and mechanism of room-temperature microstructural evolution in electroplated copper foils. Scr. Mater. 58, 65 (2008)CrossRefGoogle Scholar
6Gao, L., Peng, A., Wang, Z.Y., Zhang, H., Shi, Z., Gu, Z., Cao, G. and Ding, B.: Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors. Solid State Commun. 146, 380 (2008)CrossRefGoogle Scholar
7Talapatra, S., Kar, S., Pal, S.K., Vajtai, R., Cl, L., Victor, P., Shaijumon, M.M., Kaur, S., Nalamasu, O. and Ajayan, P.M.: Direct growth of aligned carbon nanotubes on bulk metals. Nature Nanotechnology 1, 112 (2006)CrossRefGoogle ScholarPubMed
8Yun, Y., Gollapudi, R., Shanov, V., Schulz, M. and Dong, Z.: Carbon nanotubes grown on stainless steel to form plate and probe electrodes for chemical/biological sensing. J. Nanosci. Nanotechnol. 7, 1 (2007)CrossRefGoogle ScholarPubMed
9Lin, N., Wang, H., Dixit, P., Xu, T., Zhang, S. and Miao, J.: Investigation of carbon nanotube growth on multimetal layers for advanced interconnect applications in microelectronic devices. J. Electrochem. Soc. 156, K23 (2009).CrossRefGoogle Scholar
10Wang, H., Feng, J.Y., Hu, X.J. and Ng, K.M.: Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor deposition. J. Phys. Chem. C 111, 12617 (2007)Google Scholar
11Brongersma, S.H. and Richard, E.: Two-step room temperature grain growth in electroplated copper. J. Appl. Phys. 86, 3642 (1999)CrossRefGoogle Scholar
12Arcos, T. de los, Garnier, M.G., Seo, J.W., Oelhafen, P., Thommen, V. and Mathys, D.: The influence of catalyst chemical state and morphology on carbon nanotube growth. J. Phys. Chem. B 108, 7728 (2004)CrossRefGoogle Scholar
13Chakrabarti, S., Pan, L., Nagasaka, T. and Nakayama, Y.: Number of walls controlled synthesis of millimeter-long vertically aligned brushlike carbon nanotubes. J. Phys. Chem. C 111, 1929 (2007)Google Scholar
14Naoto, K., Hiroyuki, U. and Toshie, O.: XPS characterization and optical properties of Si/SiO2, Si/Al2O3 and Si/MgO co-sputtered films. Solid Films 325, 130 (1998)Google Scholar
15Nagaraju, N., Fonseca, A., Konya, Z. and Nagy, J.B.: Alumina and silica supported metal catalysts for production of carbon nano-tubes. J. Mol. Catal. A: Chem. 181, 57 (2002)CrossRefGoogle Scholar
16Arcos, T. de los, Wu, Z.M. and Oelhafen, P.: Is aluminum a suitable buffer layer for carbon nanotube growth? Chem. Phys. Lett. 380, 419 (2003)CrossRefGoogle Scholar
17Ng, T., Chen, H., Koehne, B., Cassell, E.J., Li, M.A., Han, J. and Meyyappan, M.: Growth of carbon nanotubes: A combinatorial method to study the effects of catalysts and underlayers. J. Phys. Chem. B 107, 8484 (2003)CrossRefGoogle Scholar
18de, T. los Arcos, Oelhafen, P., Mathys, D., Seo, J.W., Domingo, C., Garcia-Ramos, J.V. and Sanchez-Cortes, S.: Strong influence of buffer layer type on carbon nanotube characteristics. Carbon 2004, 187 (2004)Google Scholar
19DiLeo, R.A., Landi, B.J. and Raffaelle, R.P.: Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. 101, 064306 (2007)CrossRefGoogle Scholar
20Behler, K., Osswald, S., Ye, H., Dimovski, S. and Gogotsi, Y.: Effect of thermal treatment on the structure of multi-wall carbon nanotubes. J. Nanopart. Res. 8, 11 (2006)CrossRefGoogle Scholar
21Roberta, L., DiLeo, A. and Raffaelle, R.P.: Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. 101, 064307 (2007)Google Scholar
22Ouyang, Y., Cong, L.M., Chen, L., Liu, Q.X. and Fang, Y.: Raman study on single-walled carbon nanotubes and multi-walled carbon nanotubes with different laser excitation energies. Physica E 40, 2386 (2008)CrossRefGoogle Scholar
23Yun, Y., Shanov, V., Ti, Y., Subramaniam, S. and Schulz, M.: Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition. J. Phys. Chem. B 110, 23920 (2006)CrossRefGoogle ScholarPubMed
24Yu, Z., Chen, D., Todal, B., Zhao, T., Dai, Y., Yuan, W. and Holmen, A.: Catalytic engineering of carbon nanotube production. Appl. Catal, A 279, 223 (2005)CrossRefGoogle Scholar
25Chakrabarti, S., Yoshikawa, Y., Pan, L. and Nakayama, Y.: Growth of super long aligned brush-like carbon nanotubes. Jpn. J. Appl. Phys. 45, 720 (2006)CrossRefGoogle Scholar
26Futaba, D.N., Yamada, T., Mizuno, K., Yumura, M. and Iijima, S.: Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95, 056104 (2005)CrossRefGoogle ScholarPubMed