Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T11:59:25.966Z Has data issue: false hasContentIssue false

Growth mechanism of vapor-deposited diamond

Published online by Cambridge University Press:  31 January 2011

Michael Frenklach
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
Karl E. Spear
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

An elementary-reaction mechanism of diamond growth by a vapor deposition process is proposed. The central postulate is that the main monomer growth species is acetylene. The mechanism basically consists of two alternating steps: surface activation by H abstraction of a hydrogen atom from a surface carbon and the addition of one or two acetylene molecules. During the addition reaction cycle a number of solid C–C bonds is formed and hydrogen atoms migrate from a lower to an upper surface layer. The mechanism is in general agreement with the macroscopic views of the Russian researchers and is consistent with the numerous experimental observations reported in the literature.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1DeVries, R. C. “Synthesis of Diamond Under Metastable Conditions,” General Electric Corporate Research and Development Report No. 86CRD247, March 1987.Google Scholar
2Messier, R.Badzian, A. R.Badzian, T.Spear, K. E.Bachmann, P. and Roy, R. Presented at the International Conference of Metallurgical Coatings, San Diego, March 1987; Thin Solid Films (to be published).Google Scholar
3Sokolowska, A.Michalski, A.Romanowski, Z.Zdunek, K. and Wronikowski, M.Arch. Nauki Mater. 7, 83 (1986).Google Scholar
4Derjaguin, B. V. and Fedoseev, D. V.Sci. Am. 233, 102 (1975).CrossRefGoogle Scholar
5Derjaguin, B. V. and Fedoseev, D. V.Growth of Diamond and Graphite from the Gas Phase (Nauka, Moscow, 1977), in Russian.Google Scholar
6Fedoseev, D. V.Derjaguin, B. V.Varshavskaya, I. G.Semenova-Tyan-Shanskaya, A. S., Crystallization of Diamond (Nauka, Moscow, 1984), in Russian; (a) Chaps. 5,6; (b) p. 86; (c) p. 99; (d) pp. 93-95; (e) p. 113; (f) p. 84; (g) pp. 96-99; (h) p. 89.Google Scholar
7Derjaguin, B. V. and Fedoseev, D. V.Diamonds Wrought by Man (Mir, Moscow, 1985).Google Scholar
8Derjaguin, B. V.Bouilov, L. L. and Spitsyn, B. V.Arch. Nauki Mater. 7, 111 (1986).Google Scholar
9Varnin, V. P.Fedoseev, D. V. and Teremetskaya, I. G.Arch. Nauki Mater. 7, 121 (1986).Google Scholar
1OFedoseev, D. B. and Derjaguin, B. V.Arch. Nauki Mater. 7, 213 (1986).Google Scholar
11Seinfeld, J. H.Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York, 1986), Chap. 9.Google Scholar
12Carberry, J. J.Chemical and Catalytic Reaction Engineering (McGraw-Hill, New York, 1976), pp. 363366.Google Scholar
13Tsuda, M.Nakajima, M. and Oikawa, S.J. Am. Chem. Soc. 108, 5780 (1986).CrossRefGoogle Scholar
14Boenig, H. V.Plasma Science and Technology (Cornell U.P., Ithaca, New York, 1982), Chap. 4.CrossRefGoogle Scholar
15Matsumoto, S.Sato, Y.Kamo, M. and Setaka, N.Jpn. J. Appl. Phys. 21, L183 (1982).Google Scholar
16Matsumoto, S.Sato, Y. and Tsutsumi, M.J. Mater. Sci. 17, 3106 (1982).CrossRefGoogle Scholar
17Matsumoto, S.Sato, Y.Kamo, M.Tanaka, J. and Setaka, N. in the Proceedings of the 7th International Conference on Vacuum Metallurgy (Tokyo, Japan, 1982), p. 386.Google Scholar
18Duff, R. E. and Bauer, S. H.J. Chem. Phys. 36, 1754 (1962).CrossRefGoogle Scholar
19Khandelwal, S. C. and Skinner, G. B. in Shock Waves in Chemistry, edited by Lifshitz, A. (Marcell Dekker, New York, 1981), p. 1.Google Scholar
20Glassman, I.Combustion (Academic, Orlando, 1987), 2nd ed.Google Scholar
21Westbrook, C. K. and Dryer, F. L.Prog. Energy Combust. Sci. 10, 1 (1984).CrossRefGoogle Scholar
22Dryer, F. L. and Brezinsky, K.Combust. Sci. Technol. 45, 199 (1986).CrossRefGoogle Scholar
23Frenklach, M.Clary, D. W.Gardiner, W. C. Jr. , and Stein, S. E.Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1987, in press).Google Scholar
24Adams, N. G. and Smith, D. in Reactions of Small Transient Species, edited by Fontijn, A. and Clyne, M. A. A. (Academic, London, 1983), Chap. 6.Google Scholar
25Haynes, B. S. and H. GWagner, g.Prog. Energy Combust. Sci. 7, 229 (1981).CrossRefGoogle Scholar
26Wagner, H. Gg. in Soot In Combustion Systems and Its Toxic Properties, edited by Lahaye, J. and Prado, G. (Plenum, New York, 1983), p. 171.CrossRefGoogle Scholar
27Harris, S. J. and Weiner, A. M.Ann. Rev. Phys. Chem. 36, 31 (1985).CrossRefGoogle Scholar
28Frenklach, M.Clary, D. W.Gardiner, W. C. Jr. , and Stein, S. E.Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1985), p. 887.Google Scholar
29Frenklach, M.Clary, D. W.Gardiner, W. C. Jr. , and Stein, S. E. in Shock Waves and Shock Tubes, edited by Bershader, D. and Hanson, R. (Stanford, U.P., Stanford, 1986), p. 303.Google Scholar
30Frenklach, M.Clary, D. W.Yuan, T.Gardiner, W. C. Jr. , and Stein, S. E.Combust. Sci. Technol. 50, 79 (1986).CrossRefGoogle Scholar
31Frenklach, M. and Warnatz, J.Combust. Sci. Technol. 51, 269 (1987).CrossRefGoogle Scholar
32Deshpandey, C.O'Brien, B. P., and Bunshah, R. F.Arch. Nauki Mater. 7, 87 (1986).Google Scholar
33Hirose, Y. and Terasawa, Y.Jpn. J. Appl. Phys. 25, L519 (1986).CrossRefGoogle Scholar
34Boudart, M.J. Phys. Chem. 87, 2786 (1983).CrossRefGoogle Scholar
35Varshavskaya, I. G. and Lavrent'yev, A. V., Arch. Nauki Mater. 7, 127 (1986).Google Scholar
36Arefeva, E. F. and Tesner, P. A.Combust. Expl. Shock Waves 22, 326 (1986).Google Scholar
37Graham, S. C.Homer, J. B. and Rosenfeld, J. L. J.Proc. R. Soc. London Ser. A344, 259 (1975).Google Scholar
38Frenklach, M.Taki, S. and Matula, R. A.Combust. Flame 49, 275 (1983).CrossRefGoogle Scholar
39Frenklach, M.Taki, S.Durgaprasad, M. B. and Matula, R. A.Combust. Flame 54, 81 (1983).CrossRefGoogle Scholar
40Frenklach, M.Hsu, J. P.Miller, D. L. and Matula, R. A.Combust. Flame 64, 141 (1986).CrossRefGoogle Scholar
41Matsumoto, S. and Matsui, Y.J. Mater Sci. 18, 1785 (1983).CrossRefGoogle Scholar