Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T07:29:50.302Z Has data issue: false hasContentIssue false

Growth mechanism of biaxially textured YSZ films deposited by ion-beam-assisted deposition

Published online by Cambridge University Press:  31 January 2011

J. Wiesmann
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3/7, D-37073 Göttingen, Germany
J. Dzick
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3/7, D-37073 Göttingen, Germany
J. Hoffmann
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3/7, D-37073 Göttingen, Germany
K. Heinemann
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3/7, D-37073 Göttingen, Germany
H. C. Freyhardt
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3/7, D-37073 Göttingen, Germany
Get access

Abstract

Biaxially textured YSZ films have a large technical relevance for power or electronic applications of HTS films. The YSZ serves as a diffusion barrier and as a template for an epitaxial growth of the HTS. On polycrystalline substrates the biaxial alignment is achieved by using an ion-beam-assisted deposition method. The best obtained textures were characterized by a full width at half maximum of 7° in an 〈111〉 x-ray diffraction Φ scan. The FWHM decreases with increasing film thickness. The growth mechanism is investigated with respect to three important effects: nucleation, growth selection, and homoepitaxial growth. It could be shown that during nucleation at the beginning of deposition the angle between the assisting beam and the substrate normal has to be fixed at 55°, whereas during the growth selection this angle can be varied. Especially the homoepitaxial effects allow changes in the deposition conditions without destroying the already achieved texture quality.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yu, L. S., Harper, J.M. E., Cuomo, J. J., and Smith, D. A., J. Vac. Sci. Technol. 4, 443 (1986).Google Scholar
2.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).Google Scholar
3.Wu, X. D., Foltyn, S. R., Arendt, P. N., Blumenthal, W. R., Campbell, I. H., Cotton, J. D., Coulter, J. Y., Hults, W. L., Maley, M. P., Safar, H. F., and Smith, J. L., Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
4.Wiesmann, J, Heinemann, K., and Freyhardt, H. C., Nucl. Instrum. Methods B 120, 290 (1996).Google Scholar
5.García, F., Usoskin, A., Freyhardt, H. C., Wiesmann, J., Dzick, J., Issaev, A., Hoffmann, J., and Heinemann, K., High Tc Update 10, 22 (1996).Google Scholar
6.Sonnenberg, N., Longo, A. S., Cima, M. J., Chang, B. P., Ressler, K. G., Mc Intyre, P. C., and Liu, Y. P., J. Appl. Phys. 74, 1027 (1993).Google Scholar
7.Mc Intyre, P. C., Ressler, K. G., Sonnenberg, N., and Cima, M. J., J. Vac. Sci. Technol. A 14, 210 (1996).CrossRefGoogle Scholar
8.Freyhardt, H. C., Hoffmann, J., Wiesmann, J., Dzick, J., Heinemann, K., Issaev, A., García-Moreno, F., Sievers, S., and Usoskin, A., IEEE Transact. Appl. Supercond. 7, 1426 (1997).CrossRefGoogle Scholar