Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T05:24:34.740Z Has data issue: false hasContentIssue false

Growth kinetics of chemically vapor deposited SiO2 films from silane oxidation

Published online by Cambridge University Press:  31 January 2011

Fernando Ojeda
Affiliation:
Surface Science and Engineering Department, Materials Science Institute of Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
Alejandro Castro-García
Affiliation:
Surface Science and Engineering Department, Materials Science Institute of Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
Cristina Gómez-Aleixandre
Affiliation:
Surface Science and Engineering Department, Materials Science Institute of Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
José María Albella
Affiliation:
Surface Science and Engineering Department, Materials Science Institute of Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
Get access

Abstract

The growth kinetics of SiO2 thin films obtained by low-pressure chemical vapor deposition (CVD) from SiH4/O2/N2 gas mixtures has been determined at different temperatures and flow rates. The results show that the film growth is originated by some intermediate species (e.g., SiOxHy) produced in the gas phase. At low temperatures the deposition rate is limited by some homogeneous reaction with an apparent activation energy of 1.42 eV. Furthermore, the observation of critical limits when total pressure, oxygen/silane flow ratio, and temperature are decreased gives support to a branching-chain mechanism of deposition. Finally, we have observed that the deposition rate shows a hysteresis behavior when varying the temperature within the 300–400 °C range, which has been attributed to the inhibition of silane oxidation by the Si–OH surface groups of the films grown on the reactor walls.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hartman, J. R., Famil-Ghiriha, J., Ring, M. A., and O'Neal, H. E., Combust. Flame 68, 43 (1987).CrossRefGoogle Scholar
2.Kondo, S., Tokuhashi, K., Nagai, H., Iwasaka, M., and Kaise, M., Combust. Flame 101, 170 (1995).CrossRefGoogle Scholar
3.Koda, S. and Fujiwara, O., Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1986), p. 1861.Google Scholar
4.Baliga, B. J. and Ghandhi, S. K., J. Appl. Phys. 44, 990 (1973).CrossRefGoogle Scholar
5.Maeda, M. and Nakamura, H., J. Appl. Phys. 52, 6651 (1981).CrossRefGoogle Scholar
6.Cobianu, C. and Pavelescu, C., J. Electrochem. Soc. 130, 1888 (1983).CrossRefGoogle Scholar
7.Grabiec, P. B. and Przyluski, J., Surf. Technol. 25, 307 (1985).CrossRefGoogle Scholar
8.Bennett, B. R., Lorenzo, J. P., Vaccaro, K., and Davis, A., J. Electrochem. Soc. 134, 2517 (1987).CrossRefGoogle Scholar
9.Pavelescu, C. and Cobianu, C., J. Mater. Sci. Lett. 7, 1107 (1988).CrossRefGoogle Scholar
10.Cobianu, C., Thin Solid Films 226, 1 (1993).CrossRefGoogle Scholar
11.Laidler, K. J., Chemical Kinetics (Harper & Row, New York, 1987), p. 242.Google Scholar
12.Vasilyeva, L. L., Drozdov, V. N., Repinsky, S. M., and Svitashev, K., Thin Solid Films 55, 221 (1978).CrossRefGoogle Scholar
13.Taft, E. A., J. Electrochem. Soc. 126, 1728 (1979).CrossRefGoogle Scholar
14.Vasiliev, Y. V., Vasilyeva, L. L., Drozdov, V. N., and Shklyaev, A. A., Thin Solid Films 76, 61 (1981).CrossRefGoogle Scholar
15.Watanabe, K. and Komiyama, H., J. Electrochem. Soc. 137, 1222 (1990).CrossRefGoogle Scholar
16.Liehr, M. and Cohen, S. A., Appl. Phys. Lett. 60, 198 (1992).CrossRefGoogle Scholar
17.Takahashi, T., Hagiwara, K., Egashira, Y., and Komiyama, H., J. Electrochem. Soc. 143, 1355 (1996).CrossRefGoogle Scholar
18.Nishino, S., Honda, H., and Matsunami, H., Jpn. J. Appl. Phys. 25, L87 (1986).CrossRefGoogle Scholar
19.Roth, A., Vacuum Technology, 3rd ed. (North-Holland, Amsterdam, 1990), pp. 63, 64.Google Scholar
20.Giling, L. J., J. Electrochem. Soc. 129, 634 (1982).CrossRefGoogle Scholar