Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T00:35:33.991Z Has data issue: false hasContentIssue false

Growth and electronic properties of epitaxial TiN thin films on 3C-SiC(001) and 6H-SiC(0001) substrates by reactive magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

L. Hultman
Affiliation:
Department of Physics, Linköping University, S–581 83 Linköping, Sweden
H. Ljungcrantz
Affiliation:
Department of Physics, Linköping University, S–581 83 Linköping, Sweden
C. Hallin
Affiliation:
Department of Physics, Linköping University, S–581 83 Linköping, Sweden
E. Janzén
Affiliation:
Department of Physics, Linköping University, S–581 83 Linköping, Sweden
J-E. Sundgren
Affiliation:
Department of Physics, Linköping University, S–581 83 Linköping, Sweden
B. Pécz
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, H–1325 Budapest, P.O. Box 76, Hungary
L. R. Wallenberg
Affiliation:
Inorganic Chemistry 2, Chemical Center, Lund University, P.O. Box 124, S–221 00 Lund, Sweden
Get access

Abstract

Epitaxial TiN films were grown on cubic (3C)-SiC(001) and hexagonal (6H)-SiC(0001) substrates by ultrahigh vacuum reactive magnetron sputtering from a Ti target in a mixed Ar and N2 discharge at a substrate temperature of 700 °C. Cross-sectional transmission electron microscopy, including high-resolution imaging, showed orientational relationships TiN(001)‖3C-SiC(001), and TiN[110]‖3C-SiC[110], and TiN(111)‖6H-SiC(0001) and . In the latter case, twin-related TiN domains formed as the result of nucleation on SiC terraces with an inequivalent stacking sequence of Si and C. The TiN/SiC interface was locally atomically sharp for both SiC polytypes. Defects in the TiN layers consisted of threading double positioning domain boundaries in TiN(111) on 6H-SiC. Stacking faults in 3C-SiC did not propagate upon growth of TiN. Room-temperature resistivity of TiN films was ρ = 14 μΩ cm for 6H-SiC(0001) and ρ = 17 μΩ cm for 3C-SiC(001) substrates. Specific contact resistance of TiN to 6H-SiC(0001) was 1.3 3 10−3 Ω cm2 for a 6H-SiC substrate with an n-type doping of 5 × 1017 cm−3.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Crofton, J., Barnes, P. A., Williams, J.R., and Edmond, J.A., Appl. Phys. Lett. 62, 384 (1993).Google Scholar
2. Lundberg, N. and Östling, M., Appl. Phys. Lett. 63, 3069 (1993).Google Scholar
3. Porter, L. M., Davis, R.F., Bow, J.S., Kim, M.J., and Carpenter, R.W., J. Mater. Res. 10, 26 (1995).Google Scholar
4. Rastegaeva, M. G. and Syrkin, A. L., Sensors and Actuators A 33, 95 (1992).CrossRefGoogle Scholar
5. Glass, R. C., Spellman, L. M., Tanaka, S., and Davis, R. F., J. Vac. Sci. Technol. A 10, 1625 (1992).Google Scholar
6. Moazed, K. L., Metall. Trans. A 23A, 1999 (1992).Google Scholar
7. Parrill, T. M. and Chung, Y. W., Surf. Sci. 271, 395 (1992).Google Scholar
8. Chen, J. S., Kowala, E., Nicolet, M-A., Baud, L., Jaussaud, C., Madrar, R., and Bernard, C., J. Appl. Phys. 75, 897 (1994).Google Scholar
9. Arnado, C., Tyc, S., Wyczinsk, F., and Brylisnki, C., Proc. ISCMRM 1995 (in press).Google Scholar
10. Johansson, B-O., Sundgren, J-E., Greene, J. E., Rockett, A., and Barnett, S. A., J. Vac. Sci. Technol. A 3, 303 (1985).Google Scholar
11. Ting, C. Y. and Wittmer, M., Thin Solid Films 96, 327 (1982).Google Scholar
12. Hultman, L., Choi, C-H., Chiou, W-A., and Barnett, S. A., J. Vac. Sci. Technol. B 9, 221 (1991).Google Scholar
13. Narayan, J., Tiwari, P., Chen, X., Singh, J., Chowdhury, R., and Zheleva, T., Appl. Phys. Lett. 61, 12909 (1992).Google Scholar
14. Zheleva, T., Jagannadham, K., and Narayan, J., J. Appl. Phys. 75, 860 (1994).Google Scholar
15. Kordina, O., Björketun, L-O., Henry, A., Hallin, C., Glass, R. C., Hultman, L., Sundgren, J-E., and Janzén, E., J. Cryst. Growth 154, 303 (1995).Google Scholar
16. Kordina, O., Hallin, C., Glass, R. C., Henry, A., and Janzén, E., Proc. 5th Int. Conf. on Silicon Carbide and Related Materials (ICSCRM), Inst. of Phys. Conf. Series 137, 4144 (1993).Google Scholar
17. Hultman, L., Barnett, S. A., Sundgren, J-E., and Greene, J. E., J. Cryst. Growth 92, 639 (1988).Google Scholar
18. Schroeder, D. K., in Semiconductor Material and Device Characterization (John Wiley & Sons, Inc., New York, 1990).Google Scholar
19. Kuphal, E., Solid State Electron. 24, 69 (1981).Google Scholar
20. Owman, F., Hallin, C., Mårtensson, P., and Janzén, E., J. Cryst. Growth (in press).Google Scholar
21. Owman, F., Hallin, C., and Mårtensson, P., Surf. Sci. 330, L639 (1995), and references therein.Google Scholar
22. Wahab, Q., Sardela, M.R. Jr.., Hultman, L., Henry, A., Willander, M., Janzén, E., and Sundgren, J-E., Appl. Phys. Lett. 65, 725 (1994).Google Scholar
23. Hultman, L., Shinn, M., Mirkarimi, P.B., and Barnett, S.A., J. Cryst. Growth 135, 309 (1994).Google Scholar
24. Hirashita, N., Greene, J.E., Helmersson, U., Birch, J., and Sundgren, J-E., J. Appl. Phys. 70, 4963 (1991).Google Scholar