Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T17:54:28.571Z Has data issue: false hasContentIssue false

Group IV heteroepitaxy on silicon for photonics

Published online by Cambridge University Press:  22 November 2016

Erich Kasper*
Affiliation:
University of Stuttgart, 71569 Stuttgart, Germany; and PEK Scientific Consulting, 89284 Pfaffenhofen, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Silicon emerged as an important substrate material for photonics because of its transparency in the near infrared and its superior planar waveguide properties. Active optoelectronic devices in the infrared wave length regime need semiconductor heterostructures with smaller band gaps as silicon, preferably from the group IV material system. This paper describes fundamental properties of lattice mismatched group IV heterostructures on silicon and their synthesis with epitaxy methods. Special emphasis is given to the aspects of strain management in lattice mismatched device structures and to the realization of metastable non-equilibrium materials. Well-defined strain status is obtained by growth on virtual substrates which consist of silicon substrates with strain relaxed silicon germanium buffer layers. Epitaxy methods at low growth temperatures pushed the synthesis of germanium tin alloys with tin concentrations more than ten times the equilibrium value of about 1%. These achievements pave the way for silicon photonics to efficient light emission and mid infrared operation.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kasper, E., Muessig, H.J., and Grimmeiss, H.G.: Advances in Electronic Materials, Material Science Forum 608 (Transtech Publications, Zurich, 2009); pp. 1726.Google Scholar
Sun, G., Soref, R.A., and Cheng, H.H.: Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode. Opt. Express 18, 19957 (2010).Google Scholar
Liu, J., Sun, X., Camacho-Aguilera, R.E., Kimerling, L.C., and Michel, J.: Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679 (2010).Google Scholar
Camacho-Aguilera, R.E., Cai, Y., Patel, N., Bessette, J.T., Romagnoli, M., Kimerling, L.C., and Michel, J.: An electrically pumped germanium laser. Opt. Express 20, 11316 (2012).Google Scholar
Koerner, R., Oehme, M., Gollhofer, M., Schmid, M., Kostecki, K., Bechler, S., Widmann, D., Kasper, E., and Schulze, J.: Electrically pumped lasing from Ge Fabry-Perot resonators on Si. Opt. Express 23, 14815 (2015).Google Scholar
Wirths, S., Geiger, R., von den Driesch, N., Mussler, G., Stoica, T., Mantl, S., Ikonic, Z., Luysberg, M., Chiussi, S., Hartmann, J.M., Sigg, H., Faist, J., Buca, D., and Grützmacher, D.: Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics 9, 88 (2015).Google Scholar
Herzog, H.J.: Crystal structure, lattice parameters and liquids-solidus curve of the SiGe system. Properties of Silicon Germanium and SiGe:Carbon, EMIS Data Review Series No. 24 (IEE, London, 2000); pp. 4549.Google Scholar
Asaro, R.J. and Tiller, W.A.: Interface morphology development during stress corrosion cracking: Part 1. Via surface diffusion. Metall. Trans. 3, 1789 (1972).CrossRefGoogle Scholar
Grinfeld, M.A.: Instability of the separation boundary between a non-hydrostatically stressed elastic body and a melt. Sov. Phys.-Dokl. 31, 8831 (1986).Google Scholar
Srolovitz, D.J.: On the stability of surfaces of stressed solids. Acta Metall. 37, 621 (1989).CrossRefGoogle Scholar
Duska, C.J. and Floro, J.A.: Highly uniform arrays of epitaxial Ge quantum dots with interdot spacing of 50 nm. J. Mater. Res. 29, 2240 (2014).CrossRefGoogle Scholar
Frank, F.C. and Van der Merwe, J.H.: Frontiers in surface and interface science. Proc. Roy. Soc. A198, 200 (1949).Google Scholar
Matthews, J.W. and Blakeslee, A.E.: Defects in epitaxial multilayers. I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974).Google Scholar
Kasper, E.: Silicon germanium heterodevices. Appl. Surf. Sci. 102, 189 (1996).Google Scholar
Richardson, C.J.K. and Lee, M.L.: Metamorphic epitaxial materials. MRS Bull. 41, 193 (2016).Google Scholar
Kasper, E., Herzog, H.J., Daembkes, H., and Abstreiter, G.: Equally strained Si/SiGe superlattices on Si substrates. MRS Symp. Proc. 56, 347357 (1986).CrossRefGoogle Scholar
Kasper, E. and Oehme, M.: Germanium tin light emitters on silicon. Jpn. J. Appl. Phys. 54, 04DG11 (2015).CrossRefGoogle Scholar
Aubin, J., Hartmann, J.M., Bauer, M., and Moffat, S.: Very low temperature epitaxy of Ge and Ge rich SiGe alloys with Ge2H6 in a reduced pressure—chemical vapour deposition tool. J. Cryst. Growth 445, 65 (2016).Google Scholar
Houghton, D.C.: Strain relaxation kinetics in Si1−x Ge x /Si heterostructures. J. Appl. Phys. 70, 2136 (1991).Google Scholar
Kasper, E., Burle, N., Escoubas, S., Werner, J., Oehme, M., and Lyutovich, K.: Strain relaxation of metastable SiGe/Si: Investigation with two complementary x-ray techniques. J. Appl. Phys. 111, 063507 (2012).Google Scholar
Hartmann, J.M., Abbadie, A., and Favier, S.: Critical thickness for plastic relaxation of SiGe on Si(001) revisited. J. Appl. Phys. 110, 083529 (2011).Google Scholar
Sze, S.: Physics of Semiconductor Devices, 2nd ed. (J. Wiley, New York, 1981); p. 69.Google Scholar
Claeys, C. and Simoen, E.: Germanium-based Technologies (Elsevier, Amsterdam, 2007); p. 338.Google Scholar
Yurasov, D.V., Antonov, A.V., Drozdov, M.N., Schmagin, V.B., Spirin, K.E., and Novikov, A.V.: Antimony segregation in Ge and formation of n-type selectively doped Ge films in molecular beam epitaxy. J. Appl. Phys. 118, 145701 (2015).Google Scholar
Jorke, H.: Segregation of Ge and Dopant Atoms During Growth of SiGe Layers. EMIS Data Reviews Series 24 (IEE, London, 2000); pp. 287301.Google Scholar
Oehme, M., Werner, J., and Kasper, E.: Molecular beam epitaxy of highly antimony doped germanium on silicon. J. Cryst. Growth 310, 4531 (2008).Google Scholar
Xu, C., Senaratne, C.L., Kouvetakis, J., and Menendez, J.: Experimental doping dependence of the lattice parameter in n-type Ge: Identifying the correct theoretical framework by comparison with Si. Phys. Rev. B93, 041201 (2016).Google Scholar
Shimura, Y., Srinivasan, S.A., Van Thourhout, D., and Loo, R.: Enhanced active P doping by using high order Ge precursors leading to intense photoluminescence. Thin Solid Films 602, 56 (2016).CrossRefGoogle Scholar
Klesse, W.M., Scappucci, G., Capellini, G., Hartmann, J.M., and Simmons, M.Y.: Atomic layer doping of strained Ge-on-insulator thin films with high electron densities. Appl. Phys. Lett. 102, 151103 (2013).Google Scholar
Camacho-Aguilera, R.E., Cai, Y., Bassette, J.T., Kimerling, L.C., and Michel, J.: An electrically pumped germanium laser. Opt. Mater. Express 2, 1462 (2012).Google Scholar
Eberl, K., Brunner, K., and Schmidt, O.G.: SiC and SiGeC alloy layers. In Germanium Silicon, Physics and Materials, R. Hull, and J.C. Bean, eds.; Semiconductors and Semimetals 56, Academic Press, New York, 1999; p. 387.Google Scholar
Kelires, P.C.: Short-range order, bulk moduli, and physical trends in c-Si1−x C x alloys. Phys. Rev. B55, 8784 (1997).CrossRefGoogle Scholar
Augusto, C. and Forester, L.: Novel Si–Ge–C superlattices and their applications. Solid-State Electron. 110, 1 (2015).Google Scholar
Soref, R.: Silicon-based silicon–germanium–tin heterostructure photonics. Philos. Trans. R. Soc. A372, 20130113 (2014).Google Scholar
Wirths, S., Buca, D., and Mantl, S.: Si–Ge–Sn alloys: From growth to applications. Prog. Cryst. Growth Charact. Mater. 62, 1 (2016).Google Scholar
Soref, R.: Group IV photonics: Enabling 2 μm communications. Nat. Photonics 9, 358 (2015).Google Scholar
Kasper, E., Kittler, M., Oehme, M., and Arguirov, T.: Germanium tin: Silicon photonics toward the mid-infrared. Photon. Res. 1, 69 (2013).CrossRefGoogle Scholar
Moontragoon, P., Soref, R.A., and Ikonic, Z.: The direct and indirect bandgaps of unstrained SixGe1–xy Sn y and their photonic device applications. J. Appl. Phys. 112, 073106 (2012).Google Scholar
Gassenq, A., Gencarelli, F., Van Campenhout, J., Shimura, Y., Loo, R., Narcy, G., Vincent, B., and Roelkens, G.: GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt. Express 20, 27297 (2012).CrossRefGoogle ScholarPubMed
Kormos, L., Kratzer, M., Kostecki, K., Oehme, M., Sikola, T., Kasper, E., Schulze, J., and Teichert, C.: Surface analysis of epitaxially grown GeSn alloys with Sn contents between 15% and 18%. Surf. Interface Anal. (2016). doi: 10.1002/sia.6134.Google Scholar
Berbezier, I., Ayoub, J.P., Ronda, A., Oehme, M., Lyutovich, K., Kasper, E., Di Marino, M., Bisognin, G., Napolitani, E., and Berti, M.: Strain engineered segregation regimes for the fabrication of thin Si1−x Ge x layers with abrupt n-type doping. J. Appl. Phys. 107, 034309 (2010).Google Scholar
Liu, J.: Monolithically integrated Ge-on-Si active photonics. Photonics 1, 162 (2014).Google Scholar
Michel, J., Liu, J.F., and Kimerling, L.C.: High-performance Ge-on-Si photodetectors. Nat. Photonics 4, 527 (2010).Google Scholar
Reed, G.T., Mashanovich, G., Gardes, F.Y., and Thomson, D.J.: Silicon optical modulators. Nat. Photonics 4, 518 (2010).Google Scholar
Gruetzmacher, D., Wirths, S., Stange, D., von den Driesch, N., Buca, D.M., and Mantl, S.: Group IV alloys for electronic-photonic integrated circuitry on silicon. Presented at the MRS Spring Meeting, Phoenix, talk MD2.10.02 (2016).Google Scholar
Teichert, C.: Small organic molecules on surfaces: Fundamentals and applications. Phys. Rep. 365, 335 (2002).Google Scholar
Niu, G., Capellini, G., Schubert, M.A., Niermann, T., Zaumseil, P., Katzer, J., Krause, H.M., Skibitzki, O., Lehmann, M., Xie, Y.H., Känel, H., and Schroeder, T.: Dislocation-free Ge nano-crystals via pattern independent selective Ge heteroepitaxy on Si nano-tip wafers. Sci. Rep. 6, 22709 (2016).Google Scholar
Rebohle, L.: Short time annealing of epitaxial GeSn layers. Pers. Communication, 2015.Google Scholar