Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T10:16:24.112Z Has data issue: false hasContentIssue false

A green fabrication strategy for porous Yb3Al5O12 ceramics with high strength and tunable gas permeability

Published online by Cambridge University Press:  13 September 2016

Xiaofei Wang
Affiliation:
Shenzhen Key Laboratory for Advanced Materials, Department of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China
Huimin Xiang
Affiliation:
Science and Technology of Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
Guigen Wang
Affiliation:
Shenzhen Key Laboratory for Advanced Materials, Department of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China
Yanchun Zhou*
Affiliation:
Science and Technology of Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
*
a) Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

Novel porous Yb3Al5O12 ceramics are successfully fabricated via a green and simple foam-gelcasting approach. Using a nontoxic water-soluble copolymer of isobutylene and maleic anhydride (Isobam), together with a surfactant EMAL TD (Surf-E), 50 vol% solid loading Yb3Al5O12 aqueous ceramic slurries are prepared. Thanks to the small contents of organic additives (0.4 wt% Isobam and 1 vol% Surf-E) added, low linear shrinkage (∼13.9%), and mass loss (∼2.21 wt%) are obtained after pressureless sintering of gelcasted green body at 1600 °C for 4 h under an air atmosphere. Furthermore, porous Yb3Al5O12 ceramics with controlled porosity and spherical-like cells possess excellent structural and shape stability. The flexural strength and compressive strength of the as-prepared porous Yb3Al5O12 ceramics with a relative density of 20% remain as high as 6.3 and 19.7 MPa, respectively, and the gas permeability can be tuned between 4.3 × 10−13 and 7.8 × 10−11 m2 with exponentially increasing porosity from 58% to 84%.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Davis, M.E.: Ordered porous materials for emerging application. Nature 417, 813821 (2002).Google Scholar
Green, D.J. and Colombo, P.: Cellular ceramics: Intriguing structures, novel properties, and innovative applications. MRS Bull. 28, 296300 (2003).Google Scholar
Tao, Y.S., Endo, M., and Kaneko, K.: Hydrophilicity-controlled carbon aerogels with high mesoporosity. J. Am. Chem. Soc. 131, 904905 (2009).Google Scholar
Fukushima, M. and Yoshizawa, Y.: Fabrication of highly porous silica thermal insulators prepared by gelation-freezing route. J. Am. Ceram. Soc. 97, 713717 (2014).Google Scholar
Colombo, P., Vakifahmetoglu, C., and Costacurta, S.: Fabrication of ceramic components with hierarchical porosity. J. Mater. Sci. 45, 54255455 (2010).CrossRefGoogle Scholar
Studart, A.R., Gonzenbach, U.T., Tervoort, E., and Gauckler, L.J.: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89, 17711789 (2006).Google Scholar
Sakthivel, A., Huang, S.J., Chen, W.H., Lan, Z.H., Chen, K.H., Kim, T.W., Ryoo, R., Chiang, A.S.T., and Liu, S.B.: Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chem. Mater. 16, 31683175 (2004).Google Scholar
Wang, X.F., Liu, J.C., Hou, F., Lu, X.P., Sun, X., and Zhou, Y.C.: Manufacture of porous SiC/C ceramics with excellent damage tolerance by impregnation of LPCS into carbonized pinewood. J. Eur. Ceram. Soc. 35, 17511759 (2015).Google Scholar
Ohji, T. and Fukushima, M.: Macro-porous ceramics: Processing and properties. Int. Mater. Rev. 57, 115131 (2012).Google Scholar
Wang, X.F., Xiang, H.M., Sun, X., Liu, J.C., Hou, F., and Zhou, Y.C.: Porous YbB6 ceramics prepared by in situ reaction between Yb2O3 and B4C combined with partial sintering. J. Am. Ceram. Soc. 98, 22342239 (2015).Google Scholar
Colombo, P.: Conventional and novel processing methods for cellular ceramics. Philos. Trans. R. Soc., A 364, 109124 (2006).Google Scholar
Colombo, P., Hellmann, J.R., and Shelleman, D.L.: Mechanical properties of silicon oxycarbide ceramic foams. J. Am. Ceram. Soc. 84, 22452251 (2001).CrossRefGoogle Scholar
Colombo, P., Gambaryan-Roisman, T., Scheffler, M., Buhler, P., and Greil, P.: Conductive ceramic foams from preceramic polymers. J. Am. Ceram. Soc. 84, 22652268 (2001).CrossRefGoogle Scholar
Colombo, P., Hellmann, J.R., and Shelleman, D.L.: Thermal shock behavior of silicon oxycarbide foams. J. Am. Ceram. Soc. 85, 23062312 (2002).CrossRefGoogle Scholar
Shibuya, M., Takahashi, T., and Koyama, K.: Microcellular ceramics by using silicone preceramic polymer and PMMA polymer sacrificial microbeads. Philos. Trans. R. Soc., A 67, 119124 (2006).Google Scholar
Suarez, F.J., Sevilla, M., Alvarez, S., Valdes-Solis, T., and Fuertes, A.B.: Synthesis of highly uniform mesoporous sub-micrometric capsules of silicon oxycarbide and silica. Chem. Mater. 19, 30963098 (2007).Google Scholar
Krawiec, P., Schrage, C., Kockrick, E., and Kaskel, S.: Tubular and rodlike ordered mesoporous silicon (oxy)carbide ceramics and their structural transformations. Chem. Mater. 20, 54215433 (2008).Google Scholar
Bai, H., Chen, Y., Delattre, B., Tomsia, A.P., and Ritchie, R.O.: Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1, 18 (2015).CrossRefGoogle ScholarPubMed
Sepulveda, P. and Binner, J.G.P.: Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers. J. Eur. Ceram. Soc. 19, 20592066 (1999).Google Scholar
Wu, L.N., Huang, Y.D., Wang, Z.J., and Liu, L.: Controlled fabrication of porous Al2O3 ceramic by N,N′-dimethylformamide-based gel-casting. Scr. Mater. 62, 602605 (2010).CrossRefGoogle Scholar
Wu, Z., Sun, L.C., Wan, P., and Wang, J.Y.: Preparation, microstructure and high temperature performances of porous γ-Y2Si2O7 by in situ foam-gelcasting using gelatin. Ceram. Int. 41, 1423014238 (2015).Google Scholar
Deng, X.G., Wang, J.K., Liu, J.H., Zhang, H.J., Li, F.L., Duan, H.J., Lu, L.L., Huang, Z., Zhao, W.G., and Zhang, S.W.: Preparation and characterization of porous mullite ceramics via foam-gelcasting. Ceram. Int. 41, 90099017 (2015).Google Scholar
Wan, T., Yao, D.X., Hu, H.L., Xia, Y.F., Zuo, K.H., and Zeng, Y.P.: Fabrication of porous Si3N4 ceramics through a novel gelcasting method. Mater. Lett. 133, 190192 (2014).Google Scholar
Yang, Y., Shimai, S., Sun, Y., Dong, M.J., Kamiya, H., and Wang, S.W.: Fabrication of porous Al2O3 ceramics by rapid gelation and mechanical foaming. J. Mater. Res. 28, 20122016 (2013).Google Scholar
Zhou, Y.C., Xiang, H.M., and Feng, Z.H.: Theoretical investigation on mechanical and thermal properties of a promising thermal barrier material: Yb3Al5O12 . J. Mater. Sci. Technol. 30, 631638 (2014).Google Scholar
Wang, X.F., Xiang, H.M., Sun, X., Liu, J.C., Hou, F., and Zhou, Y.C.: Thermal properties of a prospective thermal barrier material: Yb3Al5O12 . J. Mater. Res. 29, 26732681 (2014).Google Scholar
Wang, X.F., Xiang, H.M., Sun, X., Liu, J.C., Hou, F., and Zhou, Y.C.: Synthesis, characterization, and sintering behavior of Yb3Al5O12 powders. Ceram. Int. 41, 17351742 (2015).Google Scholar
Wang, X.F., Xiang, H.M., Sun, X., Liu, J.C., Hou, F., and Zhou, Y.C.: Mechanical properties and damage tolerance of bulk Yb3Al5O12 ceramic. J. Mater. Sci. Technol. 31, 369374 (2015).CrossRefGoogle Scholar
Wang, X.F., Xiang, H.M., Liu, J.C., Hou, F., Sun, Y.J., and Zhou, Y.C.: Gelcasting of Yb3Al5O12 using a nontoxic water-soluble copolymer as both dispersant and gelling agent. Ceram. Int. 42, 421427 (2016).Google Scholar
He, X., Zhou, X., and Su, B.: 3D interconnective porous alumina ceramics via direct protein foaming. Mater. Lett. 63, 830832 (2009).Google Scholar
Chuanuwatanakul, C., Tallon, C., Dunstan, D.E., and Franks, G.V.: Controlling the microstructure of ceramic particle stabilized foams: Influence of contact angle and particle aggregation. Soft Matter 7, 1146411474 (2011).CrossRefGoogle Scholar
Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J.: Ultrastable particle-stabilized foams. Angew. Chem., Int. Ed. 45, 35263530 (2006).Google Scholar
Wu, H.B., Li, Y.S., Yan, Y.J., Yin, J., Liu, X.J., Huang, Z.R., Lee, S.H., and Jiang, D.L.: Processing, microstructures and mechanical properties of aqueous gelcasted and solid-state-sintered porous SiC ceramics. J. Eur. Ceram. Soc. 34, 34693478 (2014).Google Scholar
Hu, L.F. and Wang, C.A.: Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceram. Int. 36, 16971701 (2010).Google Scholar
Xu, H., Liu, J.C., Du, H.Y., Guo, A.R., and Hou, Z.G.: Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chem. Eng. J. 183, 504509 (2012).Google Scholar
Zhang, R.B., Fang, D.N., Chen, X.M., Pei, Y.M., Wang, Z.D., and Wang, Y.S.: Microstructure and properties of highly porous Y2SiO5 ceramics produced by a new water-based freeze casting. Mater. Des. 46, 746750 (2013).Google Scholar
Janney, M.A. and Omatete, O.O.: Method for molding ceramic powders using a water-based gel casting. US Patent 5028362, 1991.Google Scholar
Yao, Y., Chen, F., Chen, X., Shen, Q., and Zhang, L.M.: Fabrication of carbon foams with high mechanical properties derived from sucrose/polyacrylamide hydrogel. Diamond Relat. Mater. 64, 69 (2016).Google Scholar
Wu, Z., Sun, L.C., Wan, P., Li, J.N., Hu, Z.J., and Wang, J.Y.: In situ foam-gelcasting fabrication and properties of highly porous γ-Y2Si2O7 ceramic with multiple pore structures. Scr. Mater. 103, 153162 (2015).Google Scholar
Hiemenz, P.C. and Rayagopalan, R.: Principles of Colloid and Surface Chemistry, 3rd ed. (Marcel Dekker Inc., New York, 1997); p. 650.Google Scholar
Colombo, P.: Ceramic foams: Fabrication, properties and applications. Key Eng. Mater. 206–213, 19131918 (2002).Google Scholar
Mao, X.J., Shimai, S., and Wang, S.W.: Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28, 217222 (2008).Google Scholar
Brezny, R. and Green, D.J.: Fracture behavior of open-cell ceramics. J. Am. Ceram. Soc. 70, 827831 (1987).Google Scholar
Sepulveda, P., Ortega, F.S., Innocentini, M.D.M., and Pandolfelli, V.C.: Properties of highly porous hydroxyapatite obtained by the gelcasting of foams. J. Am. Ceram. Soc. 83, 30213024 (2000).Google Scholar
Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge, U.K., 1997): pp. 210211.Google Scholar
Takahashi, R., Sato, S., Sodesawa, T., Goto, T., Matsutani, K., and Mikami, N.: Bending strength of silica gel with bimodal pores: Effect of variation in mesopore structure. Mater. Res. Bull. 40, 11481156 (2005).CrossRefGoogle Scholar
Oliveira, F.A.C., Dias, S., Fátima, M., and Fernandes, J.C.: Behaviour of open-cell cordierite foams under compression. J. Eur. Ceram. Soc. 26, 179186 (2006).Google Scholar
Fabri, M., Celotti, G.C., and Ravaglioli, A.: Hydroxyapatite-based porous aggregates: Physico-chemical nature, structure, texture, and architecture. Biomaterials 16, 225228 (1995).CrossRefGoogle Scholar
Meille, S., Lombardi, M., Chevalier, J., and Montanaro, L.: Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior. J. Eur. Ceram. Soc. 32, 39593967 (2012).Google Scholar
Seuba, J., Deville, S., Guizard, C., and Stevenson, A.J.: Mechanical properties and failure behavior of unidirectional porous ceramics. Sci. Rep. 6, 24326-124326-11 (2016).Google Scholar
Kennedy, M.W., Zhang, K., Fritzsch, R., Akhtar, S., Bakken, J.A., and Aune, R.E.: Characterization of ceramic foam filters used for liquid metal filtration. Metall. Mater. Trans. B 44, 671690 (2013).Google Scholar
Li, D., Moraes, E.G., Colombo, P., and Shen, Z.J.: Preparation of nasal cavity-like SiC-Si3N4 foams with a hierarchical pore architecture. RSC Adv. 5, 2789127900 (2015).Google Scholar
Despois, J.F. and Mortensen, A.: Permeability of open-pore microcellular materials. Acta Mater. 53, 13811388 (2005).Google Scholar
Isobe, T., Kameshima, Y., Nakajima, A., Okada, K., and Hotta, Y.: Gas permeability and mechanical properties of porous alumina ceramics with unidirectionally aligned pores. J. Eur. Ceram. Soc. 27, 5359 (2007).CrossRefGoogle Scholar
Qing, S.Q., Zeng, Y.P., and Jiang, D.L.: Gas permeability behavior of mullite-bonded porous silicon carbide ceramics. J. Mater. Sci. 42, 71717175 (2007).Google Scholar
Innocentini, M.D.M., Salvini, V.R., Coury, J.R., and Pandolfelli, V.C.: The permeability of ceramic foams. Bull. Am. Ceram. Soc. 78, 7884 (1999).Google Scholar