Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T12:03:37.670Z Has data issue: false hasContentIssue false

Grain-boundary Voiding in Self-passivated Cu–1 at.% Al Alloy Films on Si Substrates

Published online by Cambridge University Press:  31 January 2011

D. Weiss
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität Stuttgart, Seestrasse 92, D-70174 Stuttgart, Germany
O. Kraft
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität Stuttgart, Seestrasse 92, D-70174 Stuttgart, Germany
E. Arzt
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität Stuttgart, Seestrasse 92, D-70174 Stuttgart, Germany
Get access

Abstract

The new generation of semiconductor metallization is based on Cu-film technology. In this paper we report on detrimental changes in surface morphology of self-passivated-Cu–1 at.% Al films which were magnetron-sputtered on Si substrates. Large voids appeared at grain boundaries after annealing, oxidation at temperatures at or above 500 °C, and cooling to room temperature under vacuum. Grain-orientation imaging with electron backscatter diffraction revealed that preferentially high-energy grain boundaries were voided. Contrary to reports in the literature, void growth was not prevented by the extremely clean ultrahigh-vacuum conditions during film fabrication nor by the strong and very sharp grain texture. Instead, it was clearly correlated with the stable surface oxide on the self-passivated films. Void growth was not found after annealing passivation-free films such as pure Cu or unoxidized Cu–1 at.% Al films.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Li, J., Mayer, J.W., and Colgan, E.G., J. Appl. Phys . 70, 2820 (1991).CrossRefGoogle Scholar
2.Ding, P.J., Lanford, W.A., Hymes, S., and Murarka, S.P., J. Appl. Phys. 75, 3627 (1994).CrossRefGoogle Scholar
3.Ding, P.J., Lanford, W.A., Hymes, S., and Murarka, S.P., Appl. Phys. Lett. 64, 2897 (1994).CrossRefGoogle Scholar
4.Lanford, W.A., Ding, P.J., Wang, W., Hymes, S., and Muraka, S.P., Thin Solid Films 262, 234 (1995).CrossRefGoogle Scholar
5.Wang, W., Lanford, W.A., and Murarka, S.P., Appl. Phys. Lett. 68, 1622 (1996).CrossRefGoogle Scholar
6.Weiss, D., Gao, H., and Arzt, E., Acta Mater. 49, 2395 (2001).CrossRefGoogle Scholar
7.Børgensen, P., Lee, J.K., Gleixner, R., and Li, C-Y., Appl. Phys. Lett. 60, 1706 (1992).CrossRefGoogle Scholar
8.Vinci, R.P., Marieb, T.N., and Bravman, J.C., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H., Weihs, T.P., Sanchez, J.E. Jr., and Børgesen, P., Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA. (1993), p. 297.Google Scholar
9.Nucci, J.A., Shacham-Diamand, Y., and Sanchez, J.E. Jr., Appl. Phys. Lett. 66, 3585 (1995).CrossRefGoogle Scholar
10.Nucci, J.A., Keller, R.R., Sanchez, J.E. Jr., and Shacham-Diamand, Y., Appl. Phys. Lett. 69, 4017 (1996).CrossRefGoogle Scholar
11.Nucci, J.A., Keller, R.R., Field, D.P., and Shacham-Diamand, Y., Appl. Phys. Lett. 70, 1242 (1997).CrossRefGoogle Scholar
12.Keller, R.R., Nucci, J.A., and Field, D.P., J. Electron. Mater. 26, 996 (1997).CrossRefGoogle Scholar
13.Flinn, P.A., MRS Bull. 20, 70 (1995).CrossRefGoogle Scholar
14.Kristensen, N., Ericson, F., Schweitz, J-A., and Smith, U., Thin Solid Films 197, 67 (1991).CrossRefGoogle Scholar
15.Sekiguchi, A., Koike, J., Kamiya, S., Saka, M., and Maruyama, K., Appl. Phys. Lett. 79, 1264 (2001).CrossRefGoogle Scholar
16.Shaw, T.M. and Rosenberg, R. (unpublished results).Google Scholar
17.Weiss, D., Ph.D. Dissertation Thesis, Universita¨t Stuttgart, Stuttgart, Germany (2000).Google Scholar
18.Thompson, C.V., in Annual review of materials science, edited by Huggins, R.A., Giordmaine, J.A., and Wachtman, J.B. Jr. (Annual Reviews, Palo Alto, CA, 1990), Vol. 20, p. 245.Google Scholar
19.Keller, R-M., Baker, S.P., and Arzt, E., J. Mater. Res. 13, 1307 (1998).CrossRefGoogle Scholar
20.Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992).Google Scholar
21.Wagner, C.D., Naumkin, A.V., Kraut-Vass, A., Allison, J.W., Powell, C.J., and Rumble, J.R. Jr., NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.1 (Web Version) (2000).Google Scholar
22.Adams, J.H. and authors, Metals handbook Vol. 2: Properties and selection-nonferrous alloys and special-purpose materials (ASM International, Materials Park, OH, 1990).Google Scholar
23.Kobrinsky, M.J. and Thompson, C.V., Appl. Phys. Lett. 73, 2429 (1998).CrossRefGoogle Scholar
24.Gao, H., Zhang, L., Nix, W.D., Thompson, C.V., and Arzt, E., Acta Mater. 47, 2865 (1999).CrossRefGoogle Scholar
25.Leung, O.S., Munkholm, A., Brennan, S., and Nix, W.D., J. Appl. Phys. 88, 1389 (2000).CrossRefGoogle Scholar
26.Frost, H.J. and Ashby, M.F., Deformation-mechanism maps (Pergamon, Oxford, U.K., 1982).Google Scholar
27.Hull, D. and Rimmer, D.E., Phil. Mag. 4, 673 (1959).CrossRefGoogle Scholar
28.Cocks, A.C.F. and Ashby, M.F., Prog. Mater. Sci. 27, 189 (1982).CrossRefGoogle Scholar
29.Wolf, D., Acta Metall. Mater. 38, 781 (1990).CrossRefGoogle Scholar
30.Nix, W.D., Metall. Trans A 20A, 2217 (1989).CrossRefGoogle Scholar
31.Chang, Y.A. and Himmel, L., J. Appl. Phys. 37, 3567 (1966).CrossRefGoogle Scholar