Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T15:59:49.307Z Has data issue: false hasContentIssue false

Grain growth of precursor-derived nanocrystalline gallium nitride powder

Published online by Cambridge University Press:  31 January 2011

M. Puchinger
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany
D. J. Kisailus
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
T. Wagner*
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany
*
a) Address all correspondence to this author.
Get access

Abstract

Nanocrystalline gallium nitride powder was synthesized from a gallium dimethylamide-derived polymeric precursor by pyrolysis in ammonia atmosphere to study the grain growth mechanisms in the temperature range 800–1150 °C. In particular, growth exponents and activation energies were determined. Up to 900 °C, grain growth was inhibited, whereas, above 1000 °C, evaporation–condensation was identified as the dominant material transport path.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nakamura, S. and Fasol, G., The Blue Laser Diode: GaN based Light Emitters and Lasers, 1st ed. (Springer, Berlin, Germany, 1997).CrossRefGoogle Scholar
2.Shur, M.S. and Khan, M.A., MRS Bull. 22, 44 (1997).CrossRefGoogle Scholar
3.Pearton, S.J. and Kuo, C., MRS Bull. 22, 17 (1997).CrossRefGoogle Scholar
4.Rodewald, D., Bill, J., Beck, U., Puchinger, M., Wagner, T., Greiner, A., and Aldinger, F., Adv. Mater. 11, 1502 (1999).3.0.CO;2-U>CrossRefGoogle Scholar
5.Puchinger, M., Wagner, T., Rodewald, D., Bill, J., Aldinger, F., and Lange, F.F., J. Cryst. Growth 208, 153 (2000).CrossRefGoogle Scholar
6.Puchinger, M., Wagner, T., Fini, P., Kisailus, D., Beck, U., Bill, J., Aldinger, F., Arzt, E., and Lange, F.F., J. Cryst. Growth 233, 57 (2001).CrossRefGoogle Scholar
7.Niesen, T., Puchinger, M., Gerstel, P., Rodewald, D., Wolff, J., Wagner, T., Bill, J., and Aldinger, F., Mater. Chem. Phys. 212, 39 (2000).Google Scholar
8.Parala, H., Devi, A., Wohlfart, A., Winter, M., and Fischer, R.A., Adv. Funct. Mater. 11, 224 (2001).3.0.CO;2-4>CrossRefGoogle Scholar
9.Dwilinski, R., Wysmolek, A., Baranowski, J., Kaminska, M., Doradzinski, R., Garczynski, J., Sierzputowski, L., and Jacobs, H., Acta Phys. Pol. A 88(5), 833 (1995).CrossRefGoogle Scholar
10.Kim, S.T., Ungyong Mulli 12, 70 (1999).Google Scholar
11.Balkas, C.M. and Davis, R.F., J. Am. Ceram. Soc. 79, 2309 (1996).CrossRefGoogle Scholar
12.Trehan, J.C., Parashar, D.C., Rashmi, , Suri, D.K., and Lal, Krishan, in Physics of Semiconductor Devices, edited by Kumar, V. and Agarwal, S.K. (Narosa Publishing House, New Delhi, India, 1998), p. 1318.Google Scholar
13.Kamler, G., Zachara, J., Podsiadlo, S., Adamowicz, L., and Gebicki, W., J. Cryst. Growth 212, 39 (2000).CrossRefGoogle Scholar
14.Gonsalves, K.E., Rangarajan, S.P., Carlson, G., Kumar, J., Yang, K., Benaissa, M., and Jose-Yacaman, M., Appl. Phys. Lett. 71, 2175 (1997).CrossRefGoogle Scholar
15.Fischer, R.A., Miehr, A., Herdtweck, E., Mattner, M.R., Ambacher, O., Metzger, T., Born, E., Weinkauf, S., Pulham, C.R., and Parsons, S., Chem. Eur. J. 2, 1353 (1996).CrossRefGoogle Scholar
16.Karpinski, J., Jun, J., and Porowski, S., J. Cryst. Growth 66, 1 (1984).CrossRefGoogle Scholar
17.Zetterstrom, R.B., J. Mater. Sci. 5, 1102 (1970).CrossRefGoogle Scholar
18.Grimmeis, H.G. and Koelmans, H., Z. Naturforsch. 14a, 264 (1959).CrossRefGoogle Scholar
19.Mayo, M.J., Chen, D-J., and Hague, D.C., in Nanomaterials: Synthesis, Properties and Applications, edited by Edelstein, A.S. and Cammamarata, R.C. (IOP Publishing, London, United Kingdom, 1996), p. 165.Google Scholar
20.Brook, R.J., in Treatise on Material Science and Technologies Vol. 9, Ceramic Fabrication Processes, edited by Wang, F.F.Y. (Academic Press, New York, 1976), p. 331.CrossRefGoogle Scholar
21.Seidensticker, J.R. and Mayo, M.J., Scr. Mater. 38, 1091 (1998).CrossRefGoogle Scholar
22.Novikov, V., Grain Growth and Control of Microstructure and Texture in Polycrystalline Materials, 1st ed. (CRC Press, Boca Raton FL, 1997), p. 85.Google Scholar
23.Kellett, B.J. and Lange, F.F., J. Am. Ceram. Soc. 72, 725 (1989).CrossRefGoogle Scholar
24.Readey, D.W., Lee, J., and Quadir, T., in Sintering and Heterogeneous Catalysis, edited by Kuczynski, G.C., Sargent, G.A., and Miller, A. (Mater. Res. Soc. Symp. Proc. 16, Plenum Press, New York, 1984), p. 115.Google Scholar
25.Held, R., Crawford, D.E., Johnston, A.M., Dabiran, A.M., and Cohen, P.I., Surf. Rev. Lett. 5, 913 (1998).CrossRefGoogle Scholar
26.Grandjean, N., Massies, J., Semond, F., Karpov, S.Y., and Talalaev, R.A., Appl. Phys. Lett. 74, 1854 (1999).CrossRefGoogle Scholar
27.Alexeev, A.N., Borisov, B.A., Chaly, V.P., Demidov, D.M., Dudin, A.L., Krasovitsky, D.M., Pogorelsky, Y.V., Shkurko, A.P., Sokolov, I.A., Stephanov, M.V., and Ter-Martirosyan, A.L., MRS Internet J. Nitride Semicond. Res. 4, 6 (1999).CrossRefGoogle Scholar
28.Wolter, S.D., Mohney, S.E., Venugopalan, H., Wickenden, A.E., and Koleske, D.D., J. Electrochem. Soc. 145, 629 (1998).CrossRefGoogle Scholar