Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T11:26:08.535Z Has data issue: false hasContentIssue false

Grain growth kinetics and microstructure in the high Tc YBa2Cu3O7−δ superconductor

Published online by Cambridge University Press:  31 January 2011

M.W. Shin
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
T.M. Hare
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
A.I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
C.C. Koch
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
Get access

Abstract

The grain growth and microstructure development of YBa2Cu3O7−δ have been investigated utilizing two different starting particle size distributions (normal and bimodal). The grain growth exponent, n, was found to be about 0.21 for both normal and bimodal samples. An activation energy of 125 kJ/mole was calculated. The low value of n might be attributed to the high anisotropy of grain boundary energy in this system. Samples made from the bimodal powder were found to accelerate grain growth without introducing abnormal grain growth. Although most of the samples attained fractional densities greater than 0.95, the presence of various amounts of porosity (particularly in the case of the bimodal starting powder) did not affect the growth kinetics. The measured aspect ratio of grains did not significantly change during growth. A significant difference in aspect ratio was measured between samples made from the two different starting powders. Critical currents ranged from 10 to 120 A/cm2, but no concrete relationship with grain size was established. This implies that the grains produced by this experiment were in the size range where other factors, presumably microcracking, severely limited the current carrying capacity by the weak link effect.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wu, W. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, I. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
2.Yan, M. F., Mater. Sri. Eng. 48, 53 (1981).CrossRefGoogle Scholar
3.Kurtz, S. K. and Carpay, F. M. A., J. Appl. Phys. 51, 5725 (1980).CrossRefGoogle Scholar
4.Pande, C. S., Acta Metall. 35, 2671 (1987).CrossRefGoogle Scholar
5.Kingery, W. D., Bowen, H. K., and Uhlman, D. R., Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976), p. 449.Google Scholar
6.Rhines, F. R. and Craig, K. R., Metall. Trans. 5, 413 (1974).CrossRefGoogle Scholar
7.Boiling, G. F. and Winegard, W. C., Acta Metall. 6, 283 (1958).CrossRefGoogle Scholar
8.Drolet, J. P. and Galibois, A., Acta Metall. 16, 1387 (1968).CrossRefGoogle Scholar
9.Nichols, F. A., J. Appl. Phys. 37, 4599 (1966).CrossRefGoogle Scholar
10.Lay, K. W., J. Am. Ceram. Soc. 51, 373 (1968).CrossRefGoogle Scholar
11.Nicholson, G. C., J. Am. Ceram. Soc. 48, 525 (1965).CrossRefGoogle Scholar
12.Warren, R. and Waldron, M. B., Powder Met. 15, 180 (1972).CrossRefGoogle Scholar
13.Kang, S. S. and Yoon, D. N., Metall. Trans. A 9A, 433 (1978).CrossRefGoogle Scholar
14.Jorgensen, P. J. and Bartlett, R. W., J. Appl. Phys. 44, 2876 (1973).CrossRefGoogle Scholar
15.Grest, G. S., Srolovitz, D. J., and Anderson, M. P., Acta Metall. 33, 520 (1985).CrossRefGoogle Scholar
16.Chu, C. T. and Dunn, B., J. Mater. Res. 5, 1819 (1990).CrossRefGoogle Scholar
17.Harmer, M. P., Adv. Ceram. 10, 679 (1984).Google Scholar
18.Choi, G. R., J. Am. Ceram. Soc. 54, 34 (1971).Google Scholar
19.Hillert, M., Acta Metall. 13, 227 (1965).CrossRefGoogle Scholar
20.Stuijts, A. L. and Kooy, C., Sci. Ceram. 2, 231 (1965).Google Scholar
21.Tkaczyk, J. E. and Lay, K. W., J. Mater. Res. 5, 1368 (1990).CrossRefGoogle Scholar
22.Russ, J. C., Practical Stereology (Plenum Press, New York, 1986).CrossRefGoogle Scholar
23.Asian, M., Jaegar, H., Kaiser, G., Groner, R., Schulze, K., and Petzow, G., J. Eur. Ceram. Soc. 6, 129 (1989).Google Scholar
24.Smith, D. S., Suasmore, S., and Gault, C., J. Eur. Ceram. Soc. 5, 81 (1989).CrossRefGoogle Scholar
25.Cava, R. J., Batlogg, B., van Dover, R. B., Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Rietman, E. A., Zahurak, S., and Espinosa, G. P., Phys. Rev. Lett. 58, 167 (1987).Google Scholar
26.Mawdsley, A., Trodahl, H. J., Tallon, J., Sarfati, J., and Kaiser, A. B., Nature 328, 233 (1987).CrossRefGoogle Scholar
27.Bonn, D. A., Greedan, J. E., Stager, C. V., Timusk, T., Doss, M. G., Herr, S. L., Kamaras, K., and Tanner, D. B., Phys. Rev. Lett. 58, 2249 (1987).CrossRefGoogle Scholar
28.Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248 (1989).CrossRefGoogle Scholar
29.Halbritter, J., Inter. J. Modern Phys. B 3, 719 (1989).CrossRefGoogle Scholar