Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T12:40:58.587Z Has data issue: false hasContentIssue false

Glow-discharge synthesis of silicon nitride precursor powders

Published online by Cambridge University Press:  31 January 2011

Pauline Ho
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
Richard J. Buss
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
Ronald E. Loehman
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
Get access

Abstract

A radio-frequency glow discharge is used for the synthesis of submicron, amorphous, silicon nitride precursor powders from silanc and ammonia. Powders are produced with a range of Si/N ratios, including stoichiometric, Si-rich, and N-rich, and contain substantial amounts of hydrogen. The powders appear to be similar to silicon diimide and are easily converted to oxide by water vapor. The powders lose weight and crystallize to a mixture of α and β–Si3N4 after prolonged heating at 1600 °C. Studies of spectrally and spatially resolved optical emission from the plasma are reported.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Segal, D. L., Br. Ceram. Trans. J. 85, 184 (1986).Google Scholar
2Schwier, G., in Progress in Nitrogen Ceramics, edited by Riley, F. L. (Martinus Nijhoff, Boston, MA, 1983), p. 157.CrossRefGoogle Scholar
3Prochazka, S. and Greskovich, C., Amer. Ceram. Soc. Bull. 57, 579 (1978).Google Scholar
4Haggerty, J. S. and Cannon, W. R., in Laser-Induced Chemical Processes, edited by Steinfeld, J. I. (Plenum Press, New York, 1981), p. 165.CrossRefGoogle Scholar
5Morgan, P. E. D. and Pugar, E. A., J. Am. Ceram. Soc. 68, 699 (1985).CrossRefGoogle Scholar
6Vogt, G. J. and Newkirk, L. R., in Proc. of the Symp. on High Temperature Materials-III, edited by Munir, Z. A. and Cubicciotti, D. (The Electrochemical Society, Pennington, NJ, 1985), p. 164.Google Scholar
7Chang, Yl., Young, R. M., and Pfender, E., Plasma Chem. Plasma Proc. 7, 299 (1987).CrossRefGoogle Scholar
8Kapoor, V. J. and Stein, H. J., Silicon Nitride Thin Insulating Films (The Electrochemical Society, Pennington, NJ, 1983).Google Scholar
9Lanford, W. A. and Rand, M. J., J. Appl. Phys. 49, 2473 (1978).CrossRefGoogle Scholar
10Chow, R., Lanford, W. A., Ke-Ming, Wang, and Rosier, R. S., J. Appl. Phys. 53, 5630 (1982).CrossRefGoogle Scholar
11Claassen, W.A.P., Valkenburg, W.G.J.N., Habraken, F.H.P.M., and Tamminga, Y., J. Electrochem. Soc. 130, 2419 (1983).CrossRefGoogle Scholar
12Claassen, W. A. P., Valkenburg, W.G.J.N., Willemsen, M.F. C., and Wijgert, W.M.v.d., J. Electrochem. Soc. 132, 893 (1985).CrossRefGoogle Scholar
13Stein, H.J., Wells, V. A., and Hampy, R. E., J. Electrochem. Soc. 126, 1750 (1979).CrossRefGoogle Scholar
14Lucovsky, G., Yang, J., Chao, S. S., Tyler, J. E., and Czubatyj, W., Phys. Rev. B 28, 3234 (1983).CrossRefGoogle Scholar
15Tsu, D.V., Lucovsky, G., and Mantini, M.J., Phys. Rev. B 33, 7069 (1986).CrossRefGoogle Scholar
16Lucovsky, G., Chao, S.S., Yang, J., Tyler, J.E., and Czubatyj, W., J. Vac. Sci. Tech. A2, 353 (1984).CrossRefGoogle Scholar
17Lucovsky, G., Solid State Commun. 29, 571 (1979).CrossRefGoogle Scholar
18Maeda, M. and Nakamura, H., J. Appl. Phys. 58, 484 (1985).CrossRefGoogle Scholar
19Carduner, K.R., Carter, R. O. III , Milberg, M. E., and Crosbie, G.M., Anal. Chem. 59, 2794 (1987).CrossRefGoogle Scholar
20Pikies, J. and Wojnowski, W., Z. Anorg. Allg. Chem. 521, 173 (1985).CrossRefGoogle Scholar
21Rochow, E. G., An Introduction to the Chemistry of the Silicones, 2nd edition (John Wiley and Sons, Inc., New York, 1951), p. 16.Google Scholar
22Mazdiyasni, K.S. and Cooke, C.M., J. Am. Ceram. Soc. 56, 628 (1973).CrossRefGoogle Scholar
23Wills, R. R., Markle, R.A., and Mukherjee, S.P., Amer. Ceram. Soc. Bull. 62, 904 (1983).Google Scholar
24Gottscho, R. A. and Miller, T. A., Pure and Appl. Chem. 56, 189 (1984).CrossRefGoogle Scholar
25Dreyfus, R.W., Jasinski, J.M., Walkup, R. E., and Selwyn, G.S., Pure and Appl. Chem. 57, 1265 (1985).CrossRefGoogle Scholar
26Nguyen, V. S., in Proc. of the 9th Int. Conf. on Chemical Vapor Deposition, edited by Robinson, McD., Brekel, C. H. J. van den, Cullenand, G. W.Blocher, J.M. Jr (The Electrochemical Society, Pennington, NJ, 1984), p. 213.Google Scholar
27Kampas, F.J. and Griffith, R.W., J. Appl. Phys. 52, 1285 (1981).CrossRefGoogle Scholar
28Kampas, F.J., J. Appl. Phys. 54, 2276 (1983).CrossRefGoogle Scholar
29Perrin, J. and Schmitt, J. P. M., Chem. Phys. 67, 167 (1982).CrossRefGoogle Scholar