Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T08:14:41.576Z Has data issue: false hasContentIssue false

Geoinspired synthetic chrysotile nanotubes

Published online by Cambridge University Press:  03 March 2011

N. Roveri*
Affiliation:
Department of Chemistry “G. Ciamician”, Alma Mater Studiorum University of Bologna, I-40126 Bologna, Italy
G. Falini
Affiliation:
Department of Chemistry “G. Ciamician”, Alma Mater Studiorum University of Bologna, I-40126 Bologna, Italy
E. Foresti
Affiliation:
Department of Chemistry “G. Ciamician”, Alma Mater Studiorum University of Bologna, I-40126 Bologna, Italy
G. Fracasso
Affiliation:
Department of Chemistry “G. Ciamician”, Alma Mater Studiorum University of Bologna, I-40126 Bologna, Italy
I.G. Lesci
Affiliation:
Department of Chemistry “G. Ciamician”, Alma Mater Studiorum University of Bologna, I-40126 Bologna, Italy
P. Sabatino
Affiliation:
Department of Chemistry “G. Ciamician”, Alma Mater Studiorum University of Bologna, I-40126 Bologna, Italy
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Since the 1991 discovery of hollow cylindrical carbon-based unidimensional structures, the nanotubular form of matter has been thoroughly investigated leading to a wealth of literature. Their particular features are not limited to graphite but are common in many inorganic highly anisotropic two-dimensional layered compounds. The first non-mineral inorganic nanotubes, constituted of lamellar molybdenum and tungsten disulfides, were synthesized in 1992. Afterwards, a large number of inorganic nanotubes have been synthesized, opening the path to the development of nanoelectronics, due to their dielectric properties. The unique mineral phase that crystallizes with a tubular morphology is chrysotile, which has been tentatively used to prepare ultra-thin wires by filling its hollow nanodimensional core with a conductive material. To overcome its natural heterogeneity in composition, morphology, and structure, synthetic chrysotile-inspired nanotubes have been recently synthesized. These geoinspired nanotubes can be prepared with specific properties, finalized to focused achievements such as preparation of new quantum wires. The existing knowledge on the structural and physicochemical properties of mineral and synthetic chrysotile nanotubes is reviewed, with the aim of emphasizing their potential applications as nonlinear optical and conducting technological devices. Bibliography encompasses over one hundred references.

Type
Reviews
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulfide. Nature 360, 444 (1992).CrossRefGoogle Scholar
3.Margulis, L., Salitra, G., Tenne, R., Tallanker, M.: Nested fullerene-like structures. Nature 365, 113 (1993).CrossRefGoogle Scholar
4.Feldman, Y., Wasserman, E., Srolovitch, D.J., Tenne, R.: High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).CrossRefGoogle ScholarPubMed
5.Rapoport, L., Fleischer, N., Tenne, R.: Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for solid structural nanocomposites. J. Mater. Chem. 15(18), 1782 (2005).CrossRefGoogle Scholar
6.Imai, H., Takei, Y., Shimizu, K., Matsuda, M., Hirashima, H.: Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9(12), 2971 (1999).CrossRefGoogle Scholar
7.Hu, W.B., Zhu, Y.Q., Hsu, W.K., Chang, B.H., Terrones, M., Grobert, N., Terrones, H., Hare, J.P., Kroto, H.W., Walton, D.R.M.: Generation of hollow crystalline tungsten oxide fibres. Appl. Phys. A 70(2), 231 (2000).CrossRefGoogle Scholar
8.Patzke, G.R., Krumeich, F., Nesper, R.: Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angew. Chem., Int. Ed. Engl. 41(14), 2446 (2002).3.0.CO;2-K>CrossRefGoogle ScholarPubMed
9.Hacohen, Y. Rosenfeld, Grunbaum, E., Tenne, R., Sloan, J., Hutchison, J.L.: Cage structures and nanotubes of NiCl2. Nature 395, 336 (1998).CrossRefGoogle Scholar
10.Bernaerts, D., Amelinckx, S., Van Tendeloo, G., Van Landuyt, J.: Microstructure and formation mechanism of cylindrical and conical scrolls of the misfit layer compounds PbNbnS2n+1. J. Cryst. Growth 172(3/4), 433 (1997).CrossRefGoogle Scholar
11.Remskar, M., Skraba, Z., Stadelmann, P., Levy, F.: Structural stabilization of new compounds. MoS2 and WS2 micro- and nanotubes alloyed with gold and silver. Adv. Mater. 12(11), 814 (2000).3.0.CO;2-0>CrossRefGoogle Scholar
12.Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A.: Boron nitride nanotubes. Science 269, 966 (1995).CrossRefGoogle ScholarPubMed
13.Satishkumar, B.C., Govindaraj, A., Vogl, E.M., Basumallick, L., Rao, C.N.R.: Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res. 12(3), 604 (1997).CrossRefGoogle Scholar
14.Yin, Y., Lu, Y., Sun, Y., Xia, Y.: Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett. 2(4), 427 (2002).CrossRefGoogle Scholar
15.Tourillon, G., Pontonnier, L., Levy, J.P., Langlais, V.: Electrochemically synthesized Co and Fe nanowires and nanotubes. Electrochem. Solid-State Lett. 3(1), 20 (2000).Google Scholar
16.Pokropivnyi, V.V.: Non-carbon nanotubes. I. Synthesis methods. Powder Metall. Met. Ceram. 40, 485 (2001).CrossRefGoogle Scholar
17.Ivanovskii, A.L.: Non-carbon nanotubes: Synthesis and simulation. Russ. Chem. Rev. 71(3), 175 (2002).CrossRefGoogle Scholar
18.Rao, C.N.R., Nath, M.: Inorganic nanotubes. Dalton Trans. 1, 1 (2003).CrossRefGoogle Scholar
19.Xiong, Y., Mayers, B.T., Xia, Y.: Some recent developments in the chemical synthesis of inorganic nanotubes. Chem. Commun. 40, 5013 (2005).CrossRefGoogle Scholar
20.Pokropivnyi, V.V.: Non-carbon nanotubes. II. Types and structure, Powder Metall. Met. Ceram. 40, 582 2001; III Properties and applications. Powder Metall. Met. Ceram. 41, 123 (2002).CrossRefGoogle Scholar
21.Tenne, R. Inorganic fullerene-like structures and inorganic nanotubes from 2-D layered compounds, in The Chemistry of Nanostructured Materials, edited by Yang, P. (World Scientific, Singapore, 2003), p. 147.CrossRefGoogle Scholar
22.Remškar, M.: Inorganic nanotubes. Adv. Mater. 16(17), 1497 (2004).CrossRefGoogle Scholar
23.Kiricsi, I., Fudala, A., Mehn, D., Kukovecz, A., Konya, Z., Hodos, M., Horvath, E., Urban, M., Kanyo, T., Molnar, E., Smajda, R.: Tubular inorganic nanostructures. Curr. Appl. Phys. 6, 212 (2006).CrossRefGoogle Scholar
24.Hochella, M.F. Jr. Surface chemistry, structure, reactivity of hazardous mineral dust, in Health Effects of Mineral Dusts, edited by Guthrie, J.D. and Mossman, B.T. (Rev. Miner. 28, Chelsea, MI, 1993), p. 275.CrossRefGoogle Scholar
25.Yada, K.: Study of the microstructure of chrysotile asbestos by high-resolution electron microscopy. Acta Crystallogr., Sect. A 27, 659 (1971).CrossRefGoogle Scholar
26.Cressey, B.A., Whittaker, E.J.W., Eric, J.W.: Five-fold symmetry in chrysotile asbestos revealed by transmission electron microscopy. Mineral. Mag. 57, 729 (1993).CrossRefGoogle Scholar
27.Toman, K., Frueh, A.J.: Diffraction of x-rays by the faulted cylindrical lattice of chrysotile, I. Numerical computation of diffractions profiles. Acta Crystallogr., Sect. A 24(3), 364 1968; II. Form, position and width of some diffraction profiles. Acta Crystallogr., Sect. A 24(3), 374 (1968).CrossRefGoogle Scholar
28.Whittaker, E.J.W.: The diffraction of x-rays by a cylindrical lattice. I. Acta Crystallogr. 7, 827 (1954).CrossRefGoogle Scholar
29.Whittaker, E.J.W.: Diffraction of x-rays by a cylindrical lattice. II. Acta Crystallogr. 8, 261 (1955).CrossRefGoogle Scholar
30.Whittaker, E.J.W.: A classification of cylindrical lattices. Acta Crystallogr. 8, 571 (1955).CrossRefGoogle Scholar
31.Whittaker, E.J.W.: The diffraction of x-rays by a cylindrical lattice. IV. Acta Crystallogr. 8, 726 (1955).CrossRefGoogle Scholar
32.Whittaker, E.J.W.: Structure of chrysotile. II. Clinochrysotile. Acta Crystallogr. 9, 855 (1956).CrossRefGoogle Scholar
33.Whittaker, E.J.W.: The structure of chrysotile. V. Diffuse reflections and fiber texture. Acta Crystallogr. 10, 149 (1957).CrossRefGoogle Scholar
34.Devouard, B., Baronnet, A.: Axial diffraction of curved lattices: Geometrical and numerical modeling. Application to chrysotile. Eur. J. Mineral. 7, 835 (1995).CrossRefGoogle Scholar
35.Jagodzinski, H., Kunze, G.: The thin cylindrical structure of chrysotile. III. Growth description for the thin cylinders. Neues Jahrb. Min. Monatsh. (New Mineralogical Monthly) Reviews 137(1954).Google Scholar
36.Yada, K.: Study of chrysotile asbestos by a high resolution electron microscope. Acta Crystallogr. 23, 704 (1967).CrossRefGoogle Scholar
37.Chisholm, J.E. Transmission electron microscopy of asbestos, in Asbestos, edited by Chissick, S.S. and Derricott, R. (John Wiley & Sons, New York, 1983) p. 85.Google Scholar
38.Veblen, D.R., Buseck, P.R.: Serpentine minerals: Intergrowth and new combination structures. Science 206, 1398 (1979).CrossRefGoogle ScholarPubMed
39.Wicks, F.J., O’Hanley, D.S.: Serpentine minerals: Structures and petrology. Rev. Mineral. 19, 91 (1988).Google Scholar
40.Yada, K.: Growth and microstructure of synthetic chrysotile. Am. Mineral. 62, 958 (1977).Google Scholar
41.Pott, F.: Animal experiments on biological effects of mineral fibers. I. Arc. 2, 261 (1980).Google Scholar
42.Nolan, R.P., Langer, A.M., Oechesle, G.W., Addison, J., Colflesh, D.E.: Mechanisms in Fiber Carcinogenesis, edited by Brown, R.C. (Plenum Press, New York, 1991) p. 231.CrossRefGoogle Scholar
43.Riganti, C., Aldieri, E., Bergandi, L., Fenoglio, I., Costamagna, C., Fubini, B., Bosia, A., Ghigo, D.: Crocidolite asbestos inhibits pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human lung epithelial cells. Free Radical Biol. Med. 32(9), 938 (2002).CrossRefGoogle ScholarPubMed
44.Manning, C.B., Vallyathan, V., Mossman, B.T.: Diseases caused by asbestos: Mechanisms of injury and disease development. Int. J. Immunopharmacol. 2, 191 (2002).CrossRefGoogle ScholarPubMed
45.Jaurand, M.C.: Mechanisms of fiber-induced genotoxicity. Environ. Health Perspect. 105, 1073 (1997).Google ScholarPubMed
46.Kamp, D.W., Panduri, V., Weitzman, S.A., Chandel, N.: Asbestos-induced alveolar epithelial cell apoptosis: Role of mitochondrial dysfunction caused by iron-derived free radicals. Mol. Cell. Biochem. 234/235(1&2), 153 (2002).CrossRefGoogle ScholarPubMed
47.Green, D.R., Reed, J.C.: Mitochondria and apoptosis. Science 281, 1309 (1998).CrossRefGoogle ScholarPubMed
48.Cai, J., Jones, D.P.: Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J. Biol. Chem. 273(19), 11401 (1998).CrossRefGoogle ScholarPubMed
49.Jurinski, J., Rimstidt, J.D.: Biodurability of talc. Am. Mineral. 86(4), 392 (2001).CrossRefGoogle Scholar
50.Davis, J.M., Addison, J., Bolton, R.E., Donaldson, K., Jones, A.D., Smith, T.: The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br. J. Exp. Pathol. 67(3), 415 (1986).Google ScholarPubMed
51.Miller, K.: The effects of asbestos on macrophages. Crit. Rev. Toxicol. 5(4), 319 (1978).CrossRefGoogle ScholarPubMed
52.Valerio, F., De Ferrari, M., Ottaggio, L., Repetto, E., Santi, L.: Cytogenetic effects of Rhodesian chrysotile on human lymphocytes in vitro. IARC Sci. Publ. 30, 485 (1980).Google Scholar
53.Balan, E., Mauri, F., Lemaire, C., Brouder, C., Guyot, F., Saitta, A.M., Devouard, B.: Multiple ionic-plasmon resonances in naturally occurring multiwall nanotubes: Infrared spectra of chrysotile asbestos. Phys. Rev. Lett. 89(17), 177401 (2002).CrossRefGoogle ScholarPubMed
54.Harris, A.M.: The effects of grinding on the structural and thermal properties of chrysotile asbestos fibres. 2nd International Asbestos Conference,Louvain, 1971.Google Scholar
55.Otouma, T., Take, S.: The effect of defribillation on the thermal properties of chrysotile asbestos. J. Assoc. Miner. Petrol. and Econ. Geol. 69(10), 364 (1974).CrossRefGoogle Scholar
56.Otouma, T., Take, S.: On the defribillation of chrysotile asbestos with anionic surface active agents. J. Chem. Soc. Japan 1, 64 (1975).Google Scholar
57.de Santos, H. Souza, Yada, K.: Thermal transformation of chrysotile studied by high resolution electron microscopy. Clays Clay Miner. 27, 161 (1979).CrossRefGoogle Scholar
58.Murr, L.E., Soto, K.S.: TEM comparison of chrysotile nanotubes and carbon nanotubes. J. Mater. Sci. 39, 4941 (2004).CrossRefGoogle Scholar
59.Osinubi, O.Y.O., Gochfeld, M., Kipen, H.M.: Health of asbestos and nonasbestos fibers. Environ. Health Perspect. 108(4), 665 (2000).Google ScholarPubMed
60.Bogomolov, V.N.: Liquids in ultrafine channels. (Filamentary and cluster crystals). Usp. Fiz. Nauk. 124(1), 171 (1978).CrossRefGoogle Scholar
61.Yates, H.M., Flavell, W.R., Pemble, M.E., Johnson, N.P., Romanov, S.G., Sotomayor-Torres, C.M.: Novel quantum confined structures via atmospheric pressure MOCVD growth in asbestos and opals. J. Cryst. Growth 170(1–4), 611 (1997).CrossRefGoogle Scholar
62.Romanov, S.G., Torres, C.M. Sotomayor: Nanoscale Science and Technology, edited by Garia, N., Nieto-Vesperinas, M., and Rohrer, H. (Kluwer Academic Publisher, Dordrecht, The Netherlands, 1997) p. 225.Google Scholar
63.Dujardin, E., Ebbesen, T.W., Hiura, H., Tanigaki, K.: Capillarity and wetting of carbon nanotubes. Science 265, 1850 (1994).CrossRefGoogle ScholarPubMed
64.Metraux, C., Grobety, B., Ulmer, P.: Filling of chrysotile nanotubes with metals. J. Mater. Res. 17(5), 1129 (2002).CrossRefGoogle Scholar
65.Ivanova, M.S., Kumzerov, Y.A., Poborchii, V.V., Ulashkevich, Y.V., Zhuravlev, V.V.: Ultrathin wires incorporated within chrysotile asbestos nanotubes: Optical and electrical properties. Microporous Mater. 4(4), 319 (1995).CrossRefGoogle Scholar
66.Cohen, R.W., Cody, G.D., Coutts, M.D., Abeles, B.: Optical properties of granular silver and gold films. Phys. Rev. B: Condens. Matter. 8, 3689 (1973).CrossRefGoogle Scholar
67.Zaitsev-Zotov, S.V., Kumzerov, Y.A., Firsov, Y.A., Monceau, P.: Luttinger-liquid-like transport in long InSb nanowires. J. Phys.: Condens. Matter 12 L303 (2000).Google Scholar
68.Poborchii, V.V., Ivanova, M.S., Salamatina, I.A.: Cylindrical GaAs quantum wires incorporated within chrysotile asbestos nanotubes: Fabrication and polarized optical absorption spectra. Superlattices Microstruct. 16(2), 133 (1994).CrossRefGoogle Scholar
69.Poborchii, V.V.: Optical properties of the cylindrical quantum wires in the chrysotile asbestos channels. J. Appl. Phys. 34(1), 271 (1995).CrossRefGoogle Scholar
70.Dneprovskii, V., Gushina, N., Pavlov, O., Poborchii, V.V., Salamatina, I., Zhukov, E.: Nonlinear optical absorption of GaAs quantum wires. Phys. Lett. A 204(1), 59 (1995).CrossRefGoogle Scholar
71.Dneprovskii, V., Zhukov, E.: Strong dynamic optical nonlinearities of semiconductor quantum wires. Phys. Status Solidi B 206(1), 469 (1998).3.0.CO;2-1>CrossRefGoogle Scholar
72.Dneprovskii, V., Zhukov, E., Karavanskii, V., Poborchii, V., Salamatina, I.: Nonlinear optical properties of semiconductor quantum wires. Superlattices Microstruct. 23(6), 1217 (1998).CrossRefGoogle Scholar
73.Poborkii, V.V., Al’perovich, V.I., Nozoue, Y., Ohnishi, N., Kasuya, A., Terasaki, O.: Fabrication and optical properties of ultrathin CdSe filaments incorporated into the nanochannels of fibrous magnesium silicates. J. Phys.: Condens. Matter 9, 5687 (1997).Google Scholar
74.Romanov, S.G., Sotomayor-Torres, C.M., Yates, H.M., Pemble, M.E., Butko, V., Tretijakov, V.: Optical properties of self-assembled arrays of InP quantum wires confined in nanotubes of chrysotile asbestos. J. Appl. Phys. 82(1), 380 (1997).CrossRefGoogle Scholar
75.Zhukov, E.A., Masumoto, Y., Muljarov, E.A., Romanov, S.G.: Pump-probe studies of photoluminescence of InP quantum wires embedded in dielectric matrix. Solid State Commun. 112(10), 575 (1999).CrossRefGoogle Scholar
76.Dneprovskii, V., Zhukov, E., Markova, N.Y., Mulyarov, E.A., Chernoutsan, K.A., Shalygina, O.A.: Optical properties of excitons in semiconductor (InP)-Insulator quantum wires. Phys. Solid State 42(3), 544 (2000).CrossRefGoogle Scholar
77.Chernoutsan, K., Dneprovskii, V., Gavrilov, S., Gusev, V., Muljarov, E., Romanov, S., Syrnicov, A., Shaligina, O., Zhukov, E.: Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires. Physica E (Amsterdam) 15(3), 111 (2002).CrossRefGoogle Scholar
78.Roy, D.M., Roy, R.: An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. Am. Mineral. 39(11–12), 957 (1954).Google Scholar
79.Noll, W., Kircher, H., Sybertz, W.: Adsorption and specific volume of silicates with tubular primary crystals. Kolloid-Z. 157, 1 (1958).CrossRefGoogle Scholar
80.Yang, J.C.S.: Growth of synthetic chrysotile fiber. Am. Mineral. 46, 748 (1961).Google Scholar
81.Yamai, I., Saito, H.: Effects of starting components on the hydrothermal synthesis of chrysotile fibers. J. Cryst. Growth 24/25, 617 (1974).CrossRefGoogle Scholar
82.Korytkova, E.N., Makarova, T.A.: Experimental study of the serpentinization of olivine. Dokl. Akad. Nauk SSSR 196(4), 927 (1971).Google Scholar
83.Moody, J.B.: An experimental study on the serpeninization of iron bearing olivines. Can. Mineral. 14, 462 (1976).Google Scholar
84.Yada, K., Iishi, K.: Serpentine minerals hydrothermally synthesized and their microstructures. J. Cryst. Growth 24/25, 627 (1974).CrossRefGoogle Scholar
85.Yada, K. and Iishi, K.: Microstructures of synthetic chrysotile and lizardite observed by the lattice imaging method. 3rd International Asbestos Conference,Quebec (1975).Google Scholar
86.Yada, K., Iishi, K.: Growth and microstructure of synthetic chrysotile. Am. Mineral. 62, 958 (1977).Google Scholar
87.Yada, K.: Microstructure of chrysotile and antigorite by high resolution electron microscopy. Can. Mineral. 17, 679 (1979).Google Scholar
88.Yada, K. and Tanji, T.: Direct observation of chrysotile at atomic resolution. 4th International Asbestos Conference,Torino (1980).Google Scholar
89.Koshimizu, H., Higuchi, S., Otsuka, R.: Hydrothermal synthesis and some properties of chrysotile-pecoraite solid solutions. Nendo Kagaku. 21(4), 130 (1981).Google Scholar
90.Barrese, E., Belluso, E., Abbona, F.: On the transformation of synthetic diopside into chrysotile. Eur. J. Mineral. 9(1), 83 (1997).Google Scholar
91.Chernosky, J.V. Jr.: Aggregate refractive indexes and unit cell parameters of synthetic serpentine in the system magnesium oxide-aluminum oxide-silicon dioxide-water. Am. Mineral. 60(3–4), 200 (1975).Google Scholar
92.Hemley, J.J., Montoya, J.W., Christ, C.L., Hostetler, P.B.: Mineral equilibriums in the magnesium oxide-silicon dioxide-water system. I. Talc-chrysotile-forsterite-brucite stability relations. Am. J. Sci. 277(3), 322 (1977).CrossRefGoogle Scholar
93.Dungan, M.A.: Metastability in serpentine-olivine equilibria. Am. Mineral. 62, 1018 (1977).Google Scholar
94.Oterdoom, W.H.: Tremolite- and diopside-bearing serpentine assemblages in the calcium oxide-magnesium oxide-silicon dioxide-water multisystem. Schweiz. Miner. Petro. Mitt. 58(1–2), 127 (1978).Google Scholar
95.Ozeki, S., Masuda, Y., Sano, H., Seki, H., Ooi, K.: 1H NMR spectroscopy of water adsorbed on synthetic chrysotile asbestos: Microtubes with acid and basic surfaces. J. Phys. Chem. 95, 6309 (1991).CrossRefGoogle Scholar
96.Ozeki, S., Takano, I., Shimizu, M., Kaneko, K.: ζ-Potential of synthetic chrysotile asbestos in aqueous simple salt solutions. J. Colloid Interface Sci. 132(2), 523 (1989).CrossRefGoogle Scholar
97.Falini, G., Foresti, E., Lesci, I.G., Roveri, N.: Structural and morphological characterization of synthetic chrysotile single crystals. Chem. Commun. 14, 1512 (2002).CrossRefGoogle Scholar
98.Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).CrossRefGoogle Scholar
99.Mellini, M.: The crystal structure of lizardite 1T: Hydrogen bonds and polytypism. Am. Mineral. 67(5-6), 587 (1982).Google Scholar
100.Treacy, M.M.J., Newsam, J.M., Deem, M.V.: A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. London A 433, 499 (1991).Google Scholar
101.Leoni, M., Gualtieri, A.F., Roveri, N.: Simultaneous refinement of structure and microstructure of layered materials. J. Appl. Crystallogr. 37(1), 166 (2004).CrossRefGoogle Scholar
102.Gualtieri, A.F., Artioli, G.: Quantitative determination of chrysotile asbestos in bulk materials by combined Rietveld and RIR methods. Powder Diffr. 10, 269 (1995).CrossRefGoogle Scholar
103.Wicks, F.J.: Comment on “Status of the reference x-ray powder diffraction patterns for the serpentine minerals in the PDF database-1997”. Powder Diffr. 15, 42 (2000).CrossRefGoogle Scholar
104.Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G., Roveri, N.: Tabular-shaped stoichiometric chrysotile nanocrystals. Chem.-Eur. J. 10, 3043 (2004).CrossRefGoogle ScholarPubMed
105.Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Drozdova, I.A., Gusarov, V.V.: Formation of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions. Glass Phys. Chem. 30(1), 51 (2004).CrossRefGoogle Scholar
106.Jancar, B., Suvorov, D.: The influence of hydrothermal-reaction parameters on the formation of chrysothile nanotubes. Nanotechnology 17, 25 (2006).CrossRefGoogle Scholar
107.Gazzano, E., Foresti, E., Lesci, I.G., Tomatis, M., Riganti, C., Fubini, B., Roveri, N., Ghigo, D.: Different cellular responses evoked by natural and stoichiometric synthetic chrysotile asbestos. Toxicol. Appl. Pharmacol. 206(3), 356 (2005).CrossRefGoogle ScholarPubMed
108.Bergamini, C., Fato, R., Biagini, G., Pugnaloni, A., Giantomassi, F., Foresti, E., Lesci, I.G., Roveri, N., Lenaz, G.: Mitochondrial changes induced by natural and synthetic asbestos fibers: Studies on isolated mitochondria. Cell. Mol. Biol. 50, 691 (2004).Google ScholarPubMed
109.Falini, G., Foresti, E., Lesci, I.G., Lunelli, B., Sabatino, P., Roveri, N.: Interaction of bovine serum albumin with chrysotile: Spectroscopic and morphological studies. Chem.-Eur. J. 12(7), 1968 (2006).CrossRefGoogle ScholarPubMed
110.Sabatino, P., Casella, L., Granata, A., Iafisco, M., Lesci, I.G., Monzani, E., Roveri, N.: Synthetic chrysotile fibres induce conform changes on serum albumin by surface adsorption. Chem. Mater. (In press).Google Scholar
111.Hodgson, A.A.: Scientific Advances in Asbestos, 1st ed. (Anjalena Publications Ltd., Crowthorne, Berkshire, England, 1986), p. 53.Google Scholar
112.Foresti, E., Hochella, M.F. Jr.Kornishi, H., Lesci, I.G., Madden, A.S., Roveri, N., Xu, H.: Morphological and chemical/physical characterization of Fe-doped synthetic chrysotile nanotubes. Adv. Funct. Mater. 15(6), 1009 (2005).CrossRefGoogle Scholar
113.Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Polegotchenkova, V. Yu, Povinich, V.F., Gusarov, V.V.: Synthesis of nanotubular Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 silicates at elevated temperatures and pressures. Inorg. Mater. 41(7), 743 (2005).CrossRefGoogle Scholar
114.Foresti, E., Hochella, M.F., Lesci, I.G., Roveri, N., and Xu, H.: Morphological and chemical physical characterization of Fe, Ti and Al doped synthetic chrysotile nanocrystals. 32nd International Geological Congress,Florence(20–28 August 2004).Google Scholar
115.Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R.: Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. Chem. Commun. 7, 801 (1994).CrossRefGoogle Scholar
116.Zhong, C.J., Luo, J., Maye, M.M., Han, L., Kariuki, N.: Nanostructured gold and alloy electrocatalysts. Nanotechnology in Catalysis 1, 221 (2004).Google Scholar
117.Ohno, O., Kaizu, Y., Kobayashi, H.: J-aggregate formation of a water-soluble porphyrin in acidic aqueous media. J. Chem. Phys. 99(5), 4128 (1993).CrossRefGoogle Scholar
118.Ribo, J.M., Crusats, J., Farrera, J.A., Valero, M.L.: Aggregation in water solutions of tetrasodium diprotonated meso-tetrakis(4-sulfonatophenyl)porphine. J. Chem. Soc., Chem. Commun. 681 (1994).CrossRefGoogle Scholar
119.De Luca, G., Romeo, A., Scolaro, L.M.: Role of counteranions in acid-induced aggregation of isomeric tetrapyridyl porphyrins in organic solvents. J. Phys. Chem. B 109, 7149 (2005).CrossRefGoogle Scholar