Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:00:55.221Z Has data issue: false hasContentIssue false

Further analysis of indentation loading curves: Effects of tip rounding on mechanical property measurements

Published online by Cambridge University Press:  31 January 2011

Yang-Tse Cheng
Affiliation:
Physics and Physical Chemistry Department, General Motors Global Research and Development Operations, Warren, Michigan 48090
Che-Min Cheng
Affiliation:
Laboratory for Non-linear Mechanics of Continuous Media, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
Get access

Abstract

The effects of indenter tip rounding on the shape of indentation loading curves have been analyzed using dimensional and finite element analysis for conical indentation in elastic-perfectly plastic solids. A method for obtaining mechanical properties from indentation loading curves is then proposed. The validity of this method is examined using finite element analysis. Finally, the method is used to determine the yield strength of several materials for which the indentation loading curves are available in the literature.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tabor, D., Philos. Mag. A 74, 1207 (1996).CrossRefGoogle Scholar
2.Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
3.Stone, D., LaFontaine, W. R., Alexopoulos, P., Wu, T. W., and Che-Yu Li, J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
4.Bhushan, B., Kulkarni, A., Bonin, W., and Wyrobek, J., Philos. Mag. A 74, 1117 (1996).CrossRefGoogle Scholar
5.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
6.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
7.Bhattacharya, A. K. and Nix, W. D., Int. J. Solids Structures 24, 881 (1988).CrossRefGoogle Scholar
8.Laursen, T. A. and Simo, J. C., J. Mater. Res. 7, 618 (1992).CrossRefGoogle Scholar
9.Zeng, K., Giannakopoulos, A. E., and Rowcliffe, D. J., Acta Metall. Mater. 43, 1945 (1995).CrossRefGoogle Scholar
10.Bolshakov, A., Oliver, W. C., and Pharr, G. M., J. Mater. Res. 11, 760 (1996).CrossRefGoogle Scholar
11.Loubet, J. L., Georges, J. M., and Meille, J., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P. J. and Lawn, B. R. (American Society for Testing and Materials, Philadelphia, PA, 1986), p. 72.Google Scholar
12.Hainsworth, S. V., Chandler, H. W., and Page, T. F., J. Mater. Res. 11, 1987 (1996).CrossRefGoogle Scholar
13.Rother, B., Surf. Coat. Technol. 86–87, 535 (1996).CrossRefGoogle Scholar
14.Cheng, Y-T. and Cheng, C-M., Analysis of indentation loading curves obtained using conical indenters, General Motors Research and Development Center Publication R&D-8665 (May 9, 1997); Philos. Mag. Lett. 77, 39 (1998).Google Scholar
15.Cheng, Y-T. and Cheng, C-M., Scaling laws in conical indentation of elastic-perfectly plastic solids, General Motors Research and Development Research Publication R&D-8689 (June 23, 1997); Int. J. Solids Structures (in press).Google Scholar
16. ABAQUS, Hibbitt, Karlsson & Sorensen, Inc. (Pawtucket, RI 02860, USA).Google Scholar
17.Suzuki, T. and Ohmura, T., Jpn. J. Tribology 40, 151 (1995).Google Scholar
18.Chen, Y-M., Ruff, A. W., and Dally, J. W., J. Mater. Res. 9, 1314 (1994).CrossRefGoogle Scholar
19.Tanaka, K. and Koguchi, H., Jpn. J. Tribology 40, 129 (1995).Google Scholar
20.Murakami, Y., Tanaka, K., Itokazo, M., and Shimamoto, A., Philos. Mag. A 69, 1131 (1994).CrossRefGoogle Scholar
21.Johnson, K. L., Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar