Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:48:36.789Z Has data issue: false hasContentIssue false

Fracture behavior of precracked nanocrystalline materials with grain size gradients

Published online by Cambridge University Press:  11 February 2015

Peng Wang
Affiliation:
Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
Xinhua Yang*
Affiliation:
Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
Xiaobao Tian
Affiliation:
Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The fracture behavior of precracked nanocrystals with grain size gradients is simulated using the molecular dynamics method. A large grain size gradient is found to elevate resistance to crack propagation and transform the fracture mode from intergranular to intragranular when the crack is obstructed by a coarse grain. But the intragranular crack is nipped in its bud due to the difficulty of intragranular fracture. However, intergranular fractures can be always kept in nanocrystals with a small grain size gradient. Both the Schmid factors for the slip systems of grains near the crack tip and the critical stress intensity factors are calculated, and energy partitioning is conducted to analyze the mechanisms behind this phenomenon. The research exhibits the key role of grain size gradient in improving the antifracture ability of nanocrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Farkas, D.: Fracture resistance of nanocrystalline Ni. Metall. Mater. Trans. A 38A(13), 2168 (2007).Google Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427 (2006).Google Scholar
Zhu, T. and Li, J.: Ultra-strength materials. Prog. Mater. Sci. 55(7), 710 (2010).Google Scholar
Wang, Y.M., Chen, M.W., Zhou, F.H., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419(6910), 912 (2002).Google Scholar
Wang, Y.M. and Ma, E.: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52(6), 1699 (2004).Google Scholar
Ovid'Ko, I.A. and Langdon, T.G.: Enhanced ductility of nanocrystalline and ultrafine-grained metals. Rev. Adv. Mater. Sci. 30(2), 103 (2012).Google Scholar
Fang, T.H., Li, W.L., Tao, N.R., and Lu, K.: Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331(6024), 1587 (2011).Google Scholar
Hanlon, T., Tabachnikova, E.D., and Suresh, S.: Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue 27(10–12), 1147 (2005).Google Scholar
Zhou, H.F. and Qu, S.X.: The effect of nanoscale twin boundaries on fracture toughness in nanocrystalline Ni. Nanotechnology 21(3), 35706 (2010).Google Scholar
Zhou, H.F., Qu, S.X., and Yang, W.: Toughening by nano-scaled twin boundaries in nanocrystals. Modell. Simul. Mater. Sci. Eng. 18(6), 65002 (2010).Google Scholar
Zhang, Y., Millett, P.C., Tonks, M., and Biner, S.B.: Deformation twins in nanocrystalline body-centered cubic Mo as predicted by molecular dynamics simulations. Acta Mater. 60(18), 6421 (2012).Google Scholar
Ovid Ko, I.A. and Skiba, N.V.: Nanotwins induced by grain boundary deformation processes in nanomaterials. Scr. Mater. 71(15), 33 (2014).Google Scholar
Farkas, D., Van Swygenhoven, H., and Derlet, P.M.: Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66(6), 60101 (2002).Google Scholar
Ovid Ko, I.A. and Sheinerman, A.G.: Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater. 57(7), 2217 (2009).CrossRefGoogle Scholar
Chen, H.P., Kalia, R.K., Kaxiras, E., Lu, G., Nakano, A., Nomura, K., van Duin, A., Vashishta, P., and Yuan, Z.S.: Embrittlement of metal by solute segregation-induced amorphization. Phys. Rev. Lett. 104(15), 155502 (2010).CrossRefGoogle ScholarPubMed
Cao, L. and Wang, C.: Atomistic simulation for configuration evolution and energetic calculation of crack in body-centered-cubic iron. J. Mater. Res. 21(10), 2542 (2006).CrossRefGoogle Scholar
Xie, H., Wang, C., and Yu, T.: Atomistic simulation of fracture in Ni3Al. J. Mater. Res. 23(6), 1597 (2008).Google Scholar
Yamakov, V., Wolf, D., Salazar, M., Phillpot, S.R., and Gleiter, H.: Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 49(14), 2713 (2001).Google Scholar
Chen, D.: Computer model simulation study of nanocrystalline iron. Mater. Sci. Eng., A 190(1), 193 (1995).Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995).Google Scholar
Mishin, Y., Farkas, D., Mehl, M.J., and Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59(5), 3393 (1999).Google Scholar
Faken, D. and Jónsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2(2), 279 (1994).Google Scholar
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 15012 (2010).Google Scholar
Lu, J. and Lu, K.: Surface nanocrystallization (SNC) of materials and its effect on mechanical behavior. In Comprehensive Structural Integrity, Karihaloo, I.M.O.R. ed.; Pergamon: Oxford, 2003; p. 495.Google Scholar
Xu, J., Mao, X.Z., Xie, Z.H., and Munroe, P.: Damage-tolerant, hard nanocomposite coatings enabled by a hierarchical structure. J. Phys. Chem. C 115(39), 18977 (2011).Google Scholar
Li, H.Q. and Ebrahimi, F.: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17(16), 1969 (2005).Google Scholar
Yamakov, V., Saether, E., Phillips, D.R., and Glaessgen, E.H.: Dynamic instability in intergranular fracture. Phys. Rev. Lett. 95(1), 15502 (2005).Google Scholar
Ovid Ko, I.A.: Review on the fracture processes in nanocrystalline materials. J. Mater. Sci. 42(5), 1694 (2007).Google Scholar
Zhang, Y., Millett, P.C., Tonks, M., and Biner, B.: Deformation-twin-induced grain boundary failure. Scr. Mater. 66(2), 117 (2012).Google Scholar
Pozdnyakov, V.A. and Glezer, A.M.: Structural mechanisms of fracture of nanocrystalline materials. Phys. Solid State 47(5), 817 (2005).Google Scholar
Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., and Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51(2), 387 (2003).Google Scholar
Zhou, T., Yang, X., and Chen, C.: Quasicontinuum simulation of single crystal nano-plate with a mixed-mode crack. Int. J. Solids Struct. 46(9), 1975 (2009).CrossRefGoogle Scholar
Cheng, G.M., Xu, W.Z., Jian, W.W., Yuan, H., Tsai, M.H., Zhu, Y.T., Zhang, Y.F., and Millett, P.C.: Dislocations with edge components in nanocrystalline bcc Mo. J. Mater. Res. 28(13), 1820 (2013).Google Scholar
Wang, Y.M., Sansoz, F., LaGrange, T., Ott, R.T., Marian, J., Barbee, T.W., and Hamza, A.V.: Defective twin boundaries in nanotwinned metals. Nat. Mater. 12(8), 697 (2013).Google Scholar
Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57(1), 1 (2012).Google Scholar
Zhu, Y., Li, Z., and Huang, M.: Coupled effect of sample size and grain size in polycrystalline Al nanowires. Scr. Mater. 68(9), 663 (2013).Google Scholar
Ovid'Ko, I.A., Sheinerman, A.G., and Aifantis, E.C.: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59(12), 5023 (2011).Google Scholar
Ovid'Ko, I.A. and Sheinerman, A.G.: Nanoscale rotational deformation near crack tips in nanocrystalline solids. J. Phys. D: Appl. Phys. 45(33), 335301 (2012).Google Scholar
Yang, X., Zhou, T., and Chen, C.: Effective elastic modulus and atomic stress concentration of single crystal nano-plate with void. Comput. Mater. Sci. 40(1), 51 (2007).Google Scholar
Zhang, J. and Ghosh, S.: Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material. J. Mech. Phys. Solids 61(8), 1670 (2013).Google Scholar
Shimokawa, T., Tanaka, M., Kinoshita, K., and Higashida, K.: Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals. Phys. Rev. B 83(21), 214113 (2011).Google Scholar
Uhnakova, A., Pokluda, J., Machova, A., and Hora, P.: 3D atomistic simulation of fatigue behaviour of cracked single crystal of bcc iron loaded in mode III. Int. J. Fatigue 33(12), 1564 (2011).Google Scholar
Zhu, T., Li, J., Samanta, A., Leach, A., and Gall, K.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100(2), 025502 (2008).Google Scholar
Warner, D.H., Curtin, W.A., and Qu, S.: Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. Nat. Mater. 6(11), 876 (2007).Google Scholar
Zhou, H.F., Zhang, L.F., and Qu, S.X.: Temperature effect on critical shear stress for twin boundary migration. Comput. Mater. Sci. 60, 231 (2012).Google Scholar