Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T13:09:52.072Z Has data issue: false hasContentIssue false

Formation of the (La0.67Sr0.33)2MnO4 Phase in La–Sr–Mn–O Thin Films by Pulsed Laser Deposition

Published online by Cambridge University Press:  31 January 2011

Y. H. Li
Affiliation:
National Science Foundation-Materials Research, Science and Engineering Center and Center for Superconductivity Research, University of Maryland, Park, Maryland 20742
L. Salamanca-Riba
Affiliation:
National Science Foundation-Materials Research, Science and Engineering Center and Center for Superconductivity Research, University of Maryland, Park, Maryland 20742
Y. Zhao
Affiliation:
National Science Foundation-Materials Research, Science and Engineering Center and Center for Superconductivity Research, University of Maryland, Park, Maryland 20742
S. B. Ogale
Affiliation:
National Science Foundation-Materials Research, Science and Engineering Center and Center for Superconductivity Research, University of Maryland, Park, Maryland 20742
R. Ramesh
Affiliation:
National Science Foundation-Materials Research, Science and Engineering Center and Center for Superconductivity Research, University of Maryland, Park, Maryland 20742
T. Venkatesan
Affiliation:
National Science Foundation-Materials Research, Science and Engineering Center and Center for Superconductivity Research, University of Maryland, Park, Maryland 20742
Get access

Abstract

La0.67Sr0.33MnO3 thin films were grown on LaAlO3 substrate in vacuum using pulsed laser deposition to investigate the effect of changing oxygen content. Transmission electron microscopy studies showed that the epitaxial (La0.67Sr0.33)2MnO4 phase with K2NiF4 structure formed unexpectedly as a matrix with a square-shaped nanometer-sized MnO phase distributed in a regular pattern throughout the whole film like self-assembled quantum dots. The MnO phase grew epitaxially from the LaAlO3 substrate to the top of the film with no outgrowth. High-resolution image simulation indicated that Sr ions take up only positions in every other La layer in the (La0.67Sr0.33)2MnO4 structure. Basing our theory on the composition and structure of the matrix phase, we propose that it is possibly electron-doped with a mixed valence of Mn2+/Mn3+ instead of the Mn3+/Mn4+ as in the hole-doped case.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chahara, S., Ohno, T., Kasai, K., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).CrossRefGoogle Scholar
2.Von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).CrossRefGoogle Scholar
3.Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science 264, 413 (1994).CrossRefGoogle Scholar
4.Schiffer, P., Ramirez, A.P., Bao, W., and Cheong, S.W., Phys. Rev. Lett. 75, 3336 (1995).CrossRefGoogle Scholar
5.Zener, C., Phys. Rev. 82, 403 (1951).CrossRefGoogle Scholar
6.Anderson, P.W. and Hasegawa, H., Phys. Rev. 100, 675 (1955).CrossRefGoogle Scholar
7.de Gennes, P.G., Phys. Rev. 118, 141 (1960).CrossRefGoogle Scholar
8.Millis, A.J., Littlewood, P.B., and Shraiman, B-I., Phys. Rev. Lett. 74, 5144 (1995).CrossRefGoogle Scholar
9.Millis, A.J., Littlewood, P.B., and Shraiman, B-I., Phys. Rev. Lett. 77, 175 (1996).CrossRefGoogle Scholar
10.Palstra, T.T.M, Ramirez, A.P., Cheong, S.W., Zegarski, B.R., Schiffer, P., and Zaanen, J., Phys. Rev. B 56, 5104 (1997).CrossRefGoogle Scholar
11.Zhao, G.M., Conder, K., Keller, H., and Muller, K.A., Nature 381, 676 (1996).CrossRefGoogle Scholar
12.Rao, C.N.R, Cheetham, A.K., and Mahesh, R., Chem. Mater. 8, 2421 (1996).CrossRefGoogle Scholar
13.Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).CrossRefGoogle Scholar
14.Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y., Phys. Rev. B 51, 14103 (1995).CrossRefGoogle Scholar
15.Mitchell, J.F., Argyriou, D.N., Potter, C.D., Hinks, D.G., Jorgensen, J.D., and Bader, S.D., Phys. Rev. B 54, 6172 (1996).CrossRefGoogle Scholar
16.Li, Y.H., Thomas, K.A., de Silva, P.S.I.P.N., Cohen, L.F., Goyal, A., Rajeswari, M., Mathur, N.D., Blamire, M.G., Evetts, J.E., Venkatesan, T., and MacManus-Driscoll, J.L., J. Mater. Res. 13, 2161 (1998).CrossRefGoogle Scholar
17.Ju, H.L., Gopalakrishnan, J., Peng, J.L., Li, Qi, Xiong, G.C., Venkatesan, T., and Greene, R.L., Phys. Rev. B 51, 6143 (1995).CrossRefGoogle Scholar
18.Goyal, A., Rajeswari, M., Shreekala, R., Lofland, S.E., Bhagat, S.M., Boettcher, T., Kwon, C., Ramesh, R., and Venkatesan, T., Appl. Phys. Lett. 71, 2535 (1997).CrossRefGoogle Scholar
19.Swanson, , et al., Natl. Bur. Stand. Circ. (U.S.) 539, 45 (1955).Google Scholar
20.Moritomo, Y., Asamitsu, A., Kuwahara, H., and Tokura, Y., Nature 380, 141 (1996).CrossRefGoogle Scholar
21.Moritomo, Y., Tomioka, Y., Asamitsu, A., Tokura, Y., and Matsui, Y., Phys. Rev. B 51, 3297 (1995).CrossRefGoogle Scholar
22.Zhao, Y.G., Li, Y.H., Ogale, S.B., Rajeswari, M., Smolyaninova, V., Wu, T., Salamanca-Riba, L., Greene, R.L., Ramesh, R., and Venkatesan, T., Phys. Rev. B (2000, in press).Google Scholar
23.Volgel, E.M. and Johnson, D.W., Thermochim. Acta 12, 49 (1975).CrossRefGoogle Scholar
24.Borlera, M. and Abbattista, J., Less-Common Met. 92, 55 (1983).CrossRefGoogle Scholar