Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T16:13:58.640Z Has data issue: false hasContentIssue false

Formation of patterned microstructures of polycrystalline ceramics from precursor polymers using micromolding in capillaries

Published online by Cambridge University Press:  31 January 2011

Weng Sing Beh
Affiliation:
Department of Chemistry, University of Washington, Seattle, Washington 98195
Younan Xia
Affiliation:
Department of Chemistry, University of Washington, Seattle, Washington 98195
Dong Qin
Affiliation:
Center for Nanotechnology, University of Washington, Seattle, Washington 98195
Get access

Abstract

Micromolding in capillaries has been used to generate patterned microstructures of ZrO2 or SnO2 from its polymeric precursor. After patterning, the amorphous precursor was converted into the desired polycrystalline ceramic material by calcination in air at 460 °C. The final phase for each ceramic material was determined by powder x-ray diffraction. The shrinkage of the precursor material during pyrolysis was investigated by scanning electron microscopy and atomic force microscopy. These ceramic microstructures could be either supported on solid substrates or released as freestanding fibers and membranes. Their lateral dimensions could be as small as approximately 500 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sayer, M. and Sreenivas, K., Science 247, 1056 (1990).CrossRefGoogle Scholar
2.Wang, S.N., Li, J-F., Toda, R., Watanabe, R., Minami, K., and Esashi, M., IEEE Proc. Micro Electro Mech. Syst. 223 (1998).Google Scholar
3.Moya, J.S., Adv. Mater. 7, 185 (1995).Google Scholar
4.Knitter, R. and Odemer, C., KfK-Nachrichten 26, 240 (1994).Google Scholar
5.Bride, J.A., Baskaran, S., Taylor, N., Holloran, J.W., Juan, W.H., Pang, S.W., and O'Donnell, M., Appl. Phys. Lett. 63, 3379 (1993).CrossRefGoogle Scholar
6.Prudenziati, M., Sens. Actuators A 25–27, 227 (1991).Google Scholar
7.Xia, Y. and Whitesides, G.M., Angew. Chem., Int. Ed. Engl. 37, 551 (1998);3.0.CO;2-G>CrossRefGoogle Scholar
Xia, Y. and Whitesides, G.M., Annu. Rev. Mater. Sci. 28, 153 (1998).Google Scholar
8.Kim, E., Xia, Y., and Whitesides, G.M., J. Am. Chem. Soc. 118, 5722 (1996).CrossRefGoogle Scholar
9.Jeon, N.L., Clem, P.G., Nuzzo, R.G., and Payne, D.A., J. Mater. Res. 10, 2996 (1995).Google Scholar
10.Aksay, I.A., Groves, J.T., Gruner, S.M., Lee, P.C.Y, Prud'homme, R.K., Shih, W-H., Torquato, S., and Whitesides, G.M., Proc. SPIE 2716, 280 (1995);CrossRefGoogle Scholar
Trau, M., Yao, N., Kim, E., Xia, Y., and Whitesides, G.M., Nature 390, 674 (1997).CrossRefGoogle Scholar
11.Marzolin, C., Smith, S.P., Prentiss, M., and Whitesides, G.M., Adv. Mater. 10, 571 (1998).3.0.CO;2-P>CrossRefGoogle Scholar
12.Fisher, G., Ceram. Bull. 67, 622 (1986);Google Scholar
Jones, A.C., Leedham, T.J., Wright, P.J., Crosbie, M.J., Lane, P.A., Williams, D.J., Fleeting, K.A., Otway, D.J., and O'Brien, P., Chem. Vap. Deposition 4, 46 (1998).3.0.CO;2-1>CrossRefGoogle Scholar
13.Clauss, B., Grub, A., and Oppermann, W., Adv. Mater. 8, 142 (1996).Google Scholar
14.Nayal, C., Ould-Ely, T., Maisonnat, A., Chaudret, B., Fau, P., Lescouzeres, L., and Peyre-Lavinge, A., Adv. Mater. 11, 61 (1999).Google Scholar
15.Watson, J. and Ihokura, K., MRS Bull. 24 (6), 14 (1999).CrossRefGoogle Scholar
16.Shanthi, E., Dutta, V., Banerjee, A., and Chopra, K.L., J. Appl. Phys. 51, 6243 (1980).Google Scholar
17.Kim, E., Xia, Y., and Whitesides, G.M., Nature 376, 581 (1995).CrossRefGoogle Scholar
18.Xia, Y., Kim, E., and Whitesides, G.M., Chem. Mater. 8, 1558 (1996).Google Scholar
19.Beh, W.S., Kim, I.T., Qin, D., Xia, Y., and Whitesides, G.M., Adv. Mater. (1999, in press).Google Scholar
20.Rogers, J.A., Bao, Z., and Raju, V.R., Appl. Phys. Lett. 72, 2716 (1998).CrossRefGoogle Scholar
21.Kim, E., Xia, Y., and Whitesides, G.M., Adv. Mater. 8, 245 (1996).CrossRefGoogle Scholar
22.Delamarche, E., Bernard, A., Schmid, H., Michel, B., and Biebuyck, H., Science 276, 779 (1997).CrossRefGoogle Scholar
23.Katz, G., J. Am. Ceram. Soc. 54, 531 (1971).CrossRefGoogle Scholar
24.Park, S-S. and Mackenzie, J.D., J. Am. Ceram. Soc. 78, 2669 (1995).CrossRefGoogle Scholar
25.Jeon, N.L. and Choi, I.S., Xu, B., and Whitesides, G.M., Adv. Mater. 11, 946 (1999).Google Scholar
26.Bhave, R.R., Inorganic Membranes: Synthesis, Characteristics and Applications (Van Nostrand Reinhold, New York, 1991).CrossRefGoogle Scholar
27.Xia, Y., Zhao, X-M., and Whitesides, G.M., Chem. Mater. 7, 2332 (1995).Google Scholar
28.Xia, Y., Zhao, X-M., and Whitesides, G.M., Microelectron. Eng. 32, 255 (1996).Google Scholar