Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T05:25:51.111Z Has data issue: false hasContentIssue false

Formation of novel photoluminescent hybrid materials by sequential vapor infiltration into polyethylene terephthalate fibers

Published online by Cambridge University Press:  21 November 2014

Halil I. Akyildiz
Affiliation:
Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695, USA; and Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
Michael Lo
Affiliation:
Anasys Instruments, Inc., Santa Barbara, California 93101, USA
Eoghan Dillon
Affiliation:
Anasys Instruments, Inc., Santa Barbara, California 93101, USA
Adam T. Roberts
Affiliation:
Army Aviation and Missile Research, Development, and Engineering Center, Redstone Arsenal, Huntsville, Alabama 35898, USA
Henry O. Everitt
Affiliation:
Army Aviation and Missile Research, Development, and Engineering Center, Redstone Arsenal, Huntsville, Alabama 35898, USA; and Department of Physics, Duke University, Durham, North Carolina 27708, USA
Jesse S. Jur*
Affiliation:
Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Fibrous polyethylene terephthalate (PET) was modified by organometallic vapor exposure to form hybrid materials with unique photoluminescent characteristics. Using a sequential vapor infiltration (SVI) process, the elongated exposures of trimethylaluminum (TMA) to PET were examined. As the infiltration temperature increased, the evidence of changes in the reaction between the organometallic vapor and the polymer was observed as well as significant changes in the infiltration depth into the polymer fiber, owing to the variation in the reaction mechanisms of the hybrid material formation. At TMA exposures of 60 °C, the mass of the polymer fiber increased by ∼55 wt%, whereas exposures at 150 °C were limited to ∼25 wt% infiltration. Photoluminescence analysis of PET after TMA infiltration shows an intensity increase of up to ∼13x and an increase in red shift with increasing infiltration temperature, attributed to the variations in the reaction mechanism to form the hybrid modification observed through the spectroscopy analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonanno, L.M. and Segal, E.: Nanostructured porous silicon-polymer-based hybrids: From biosensing to drug delivery. Nanomedicine 6(10), 1755 (2011).CrossRefGoogle ScholarPubMed
Bouclé, J., Ravirajan, P., and Nelson, J.: Hybrid polymer–metal oxide thin films for photovoltaic applications. J. Mater. Chem. 17(30), 3141 (2007).Google Scholar
Sanchez, C., Lebeau, B., Chaput, F., and Boilot, J.P.: Optical properties of functional hybrid organic–inorganic nanocomposites. Adv. Mater. 15(23), 1969 (2003).CrossRefGoogle Scholar
Floch, H. and Belleville, P.: A scratch-resistant single-layer antireflective coating by a low temperature sol-gel route. J. Sol-Gel Sci. Technol. 1(3), 293 (1994).CrossRefGoogle Scholar
Wight, A. and Davis, M.: Design and preparation of organic-inorganic hybrid catalysts. Chem. Rev. 102(10), 3589 (2002).Google Scholar
Lim, M.H. and Stein, A.: Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials. Chem. Mater. 11(11), 3285 (1999).Google Scholar
Judeinstein, P. and Sanchez, C.: Hybrid organic-inorganic materials: A land of multidisciplinarity. J. Mater. Chem. 6(4), 511 (1996).Google Scholar
Gong, B., Peng, Q., and Parsons, G.: Conformal organic-inorganic hybrid network polymer thin films by molecular layer deposition using trimethylaluminum and glycidol. J. Phys. Chem. B 115(19), 5930 (2011).Google Scholar
Yoon, B., O'Patchen, J., Seghete, D., Cavanagh, A., and George, S.: Molecular layer deposition of hybrid organic-inorganic polymer films using diethylzinc and ethylene glycol. Chem. Vap. Deposition 15(4–6), 112 (2009).Google Scholar
Dameron, A., Seghete, D., Burton, B., Davidson, S., Cavanagh, A., Bertrand, J., and George, S.: Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chem. Mater. 20(10), 3315 (2008).Google Scholar
Li, Y., Mannen, S., Schulz, J., and Grunlan, J.: Growth and fire protection behavior of POSS-based multilayer thin films. J. Mater. Chem. 21(9), 3060 (2011).Google Scholar
Li, Y., Schulz, J., Mannen, S., Delhom, C., Condon, B., Chang, S., Zammarano, M., and Grunlan, J.: Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4(6), 3325 (2010).Google Scholar
Akyildiz, H.I., Padbury, R., Parsons, G.N., and Jur, J.S.: Temperature and exposure dependence of hybrid organic-inorganic layer formation by sequential vapor infiltration into polymer fibers. Langmuir 28(44), 15697 (2012).CrossRefGoogle ScholarPubMed
Gong, B., Peng, Q., Jur, J.S., Devine, C.K., Lee, K., and Parsons, G.N.: Sequential vapor infiltration of metal oxides into sacrificial polyester fibers: Shape replication and controlled porosity of microporous/mesoporous oxide monoliths. Chem. Mater. 23(15), 3476 (2011).Google Scholar
Gong, B., Spagnola, J.C., and Parsons, G.N.: Hydrophilic mechanical buffer layers and stable hydrophilic finishes on polydimethylsiloxane using combined sequential vapor infiltration and atomic/molecular layer deposition. J. Vac. Sci. Technol. A 30(1), 01A1561 (2012).Google Scholar
Lee, S-M., Ischenko, V., Pippel, E., Masic, A., Moutanabbir, O., Fratzl, P., and Knez, M.: An alternative route towards metal-polymer hybrid materials prepared by vapor-phase processing. Adv. Funct. Mater. 21(16), 3047 (2011).Google Scholar
Lee, S-M., Pippel, E., Goesele, U., Dresbach, C., Qin, Y., Chandran, C.V., Braeuniger, T., Hause, G., and Knez, M.: Greatly increased toughness of infiltrated spider silk. Science 324(5926), 488 (2009).Google Scholar
Lee, S-M., Pippel, E., Moutanabbir, O., Gunkel, I., Thurn-Albrecht, T., and Knez, M.: Improved mechanical stability of dried collagen membrane after metal infiltration. ACS Appl. Mater. Interfaces 2(8), 2436 (2010).CrossRefGoogle ScholarPubMed
Peng, Q., Tseng, Y-C., Darling, S.B., and Elam, J.W.: A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. ACS Nano 5(6), 4600 (2011).Google Scholar
Tseng, Y-C., Peng, Q., Ocola, L.E., Czaplewski, D.A., Elam, J.W., and Darling, S.B.: Etch properties of resists modified by sequential infiltration synthesis. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 29(6), 06FG01 (2011).Google Scholar
Tseng, Y-C., Peng, Q., Ocola, L.E., Elam, J.W., and Darling, S.B.: Enhanced block copolymer lithography using sequential infiltration synthesis. J. Phys. Chem. C 115(36), 17725 (2011).Google Scholar
Wilson, C.A., Grubbs, R.K., and George, S.M.: Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chem. Mater. 17(23), 5625 (2005).Google Scholar
Jur, J.S., Spagnola, J.C., Lee, K., Gong, B., Peng, Q., and Parsons, G.N.: Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers. Langmuir 26(11), 8239 (2010).Google Scholar
Sun, Y., Padbury, R.P., Akyildiz, H.I., Goertz, M.P., Palmer, J.A., and Jur, J.S.: Influence of subsurface hybrid material growth on the mechanical properties of atomic layer deposited thin films on polymers. Chem. Vap. Deposition 19(4–6), 134141 (2013).Google Scholar
Poodt, P., Lankhorst, A., Roozeboom, F., Spee, K., Maas, D., and Vermeer, A.: High‐speed spatial atomic‐layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22(32), 3564 (2010).CrossRefGoogle ScholarPubMed
Peng, Q., Tseng, Y-C., Darling, S.B., and Elam, J.W.: Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers. Adv. Mater. 22(45), 5129 (2010).CrossRefGoogle ScholarPubMed
Mary, D., Albertini, M., and Laurent, C.: Understanding optical emissions from electrically stressed insulating polymers: Electroluminescence in poly (ethylene terephthalate) and poly (ethylene 2, 6-naphthalate) films. J. Phys. D: Appl. Phys. 30(2), 171 (1997).Google Scholar
Teyssedre, G., Mary, D., and Laurent, C.: Analysis of the luminescence decay following excitation of polyethylene naphthalate films by an electric field. J. Phys. D: Appl. Phys. 31(3), 267 (1998).CrossRefGoogle Scholar
Kim, Y., Davis, R., Cain, A., and Grunlan, J.: Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer 52(13), 2847 (2011).CrossRefGoogle Scholar
Takai, Y., Mizutani, T., and Ieda, M.: Photoluminescence study in polymers. Jpn. J. Appl. Phys. 17, 651 (1978).Google Scholar
Teyssedre, G., Menegotto, J., and Laurent, C.: Temperature dependence of the photoluminescence in poly (ethylene terephthalate) films. Polymer 42(19), 8207 (2001).Google Scholar
Spagnola, J.C., Gong, B., Arvidson, S.A., Jur, J.S., Khan, S.A., and Parsons, G.N.: Surface and sub-surface reactions during low temperature aluminium oxide atomic layer deposition on fiber-forming polymers. J. Mater. Chem. 20(20), 4213 (2010).Google Scholar
Parsons, G.N., Atanasov, S.E., Dandley, E.C., Devine, C.K., Gong, B., Jur, J.S., Lee, K., Oldham, C.J., Peng, Q., and Spagnola, J.C.: Mechanisms and reactions during atomic layer deposition on polymers. Coord. Chem. Rev. 257(23), 3323 (2013).CrossRefGoogle Scholar
Pullumbi, P., Bouteiller, Y., and Manceron, L.: The vibrational spectrum of isolated AlH4−: An infrared matrix isolation and ab initio study. J. Chem. Phys. 101(5), 3610 (1994).Google Scholar
Wang, X., Andrews, L., Tam, S., DeRose, M.E., and Fajardo, M.E.: Infrared spectra of aluminum hydrides in solid hydrogen: Al2H4 and Al2H6 . J. Am. Chem. Soc. 125(30), 9218 (2003).Google Scholar
Lin, S-Y. and Lee, Y-P.: Infrared absorption of gaseous benzoyl radical C6H5CO recorded with a step-scan Fourier-transform spectrometer. J. Phys. Chem. A 116(24), 6366 (2012).Google Scholar
Jacox, M.E.: The reaction of F atoms with acetaldehyde and ethylene oxide. Vibrational spectra of the CH3 CO and CH2CHO free radicals trapped in solid argon. Chem. Phys. 69(3), 407 (1982).CrossRefGoogle Scholar
von Ahsen, S., Willner, H., and Francisco, J.S.: Thermal decomposition of peroxy acetyl nitrate CHC (O) OONO. J. Chem. Phys. 121, 2048 (2004).Google Scholar
Bruckmann, P.W. and Willner, H.: Infrared spectroscopic study of peroxyacetyl nitrate (PAN) and its decomposition products. Environ. Sci. Technol. 17(6), 352 (1983).Google Scholar
Zhang, B., Zhang, J., and Liu, K.: Imaging the “missing” bands in the resonance-enhanced multiphoton ionization detection of methyl radical. J. Chem. Phys. 122, 104310 (2005).CrossRefGoogle ScholarPubMed
Thompson, W.E. and Jacox, M.E.: The infrared spectra of the NH-d cations trapped in solid neon. J. Chem. Phys. 114, 4846 (2001).CrossRefGoogle Scholar
Johnson, J.E.: X‐ray diffraction studies of the crystallinity in polyethylene terephthalate. J. Appl. Polym. Sci. 2(5), 205 (1959).Google Scholar
Daubeny, R.d.P. and Bunn, C.: The crystal structure of polyethylene terephthalate. Proceedings of the royal society of London. Series A. Mathematical and Physical Sciences 226(1167), 531 (1954).Google Scholar
Bower, D.I.: The Vibrational Spectroscopy of Polymers (Cambridge University Press, Cambridge, UK, 1992).Google Scholar
Archibong, E.F. and St-Amant, A.: Molecular structure of the AlO2 dimer, Al2O4 . J. Phy Chem. A 102(34), 6877 (1998).Google Scholar
Kvisle, S. and Rytter, E.: Infrared matrix isolation spectroscopy of trimethylgallium, trimethylaluminium and triethylaluminium. Spectrochim. Acta, Part A 40(10), 939 (1984).Google Scholar
O'Brien, R. and Ozin, G.: A gas-phase Raman study of trimethylaluminium and trimethylboron monomers. J. Chem. Soc. A 1136 (1971).Google Scholar
Burie, J-R., Boussac, A., Boullais, C., Berger, G., Mattioli, T., Mioskowski, C., Nabedryk, E., and Breton, J.: FTIR spectroscopy of UV-generated quinone radicals: evidence for an intramolecular hydrogen atom transfer in ubiquinone, naphthoquinone, and plastoquinone. J. Phy Chem. A 99(12), 4059 (1995).Google Scholar