Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T07:21:47.702Z Has data issue: false hasContentIssue false

Formation of intermetallic nanocomposites in the Ti–Al–Si system by mechanical alloying and subsequent heat treatment

Published online by Cambridge University Press:  31 January 2011

K. W. Liu
Affiliation:
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 100083 Beijing, People's Republic of China
J. S. Zhang
Affiliation:
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 100083 Beijing, People's Republic of China
J. G. Wang
Affiliation:
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 100083 Beijing, People's Republic of China
G. L. Chen
Affiliation:
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 100083 Beijing, People's Republic of China
Get access

Abstract

Formation of nanocrystalline Al3Ti, TiAl, Ti3Al, and Ti5Si3 composites by mechanically alloying (MA) in the Ti–Al–Si system and subsequent annealing treatment are investigated. Microstructure development was monitored by x-ray diffraction, differential thermal analysis, and transmission electron microscopy. An amorphous phase could be generated through milling for 100 h. The results of annealing at different temperatures on this amorphous phase show that the formation of titanium aluminides (Al3Ti, TiAl, and Ti3Al, according to the initial relative amount of Ti and Al) and Ti5Si3 (the only silicide produced by the crystallization reaction) take place. Annealing produces nanocrystalline composites of Al3Ti, TiAl, Ti3Al, and Ti5Si3 with a grain size less than 20 nm. With increasing annealing temperature, the crystalline sizes of the phases increased.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Froes, F. H., Suryanarayana, C., and Eliezer, D., J. Mater. Sci. 27, 5113 (1992).CrossRefGoogle Scholar
2.High Temperature Aluminides and Intermetallics, edited by Whang, S. H., Liu, C. T., Pope, D. P., and Stiegle, J. O. (Metallurgical Society of AIME, Warrendale, PA, 1990).Google Scholar
3.Mabuchi, H., Tsuda, H., Nakyama, Y., and Sukedai, E., J. Mater. Res. 7, 894 (1992).CrossRefGoogle Scholar
4.Aikin, B. J. M. and Courtney, T. H., Metall. Trans. 24A, 647 (1993).CrossRefGoogle Scholar
5.Calka, A. and Kaczmarek, W. A., Scripta Metall. 26, 249 (1992).CrossRefGoogle Scholar
6.Oehring, M., Klassen, T., and Bormann, R., J. Mater. Res. 8, 2819 (1993).CrossRefGoogle Scholar
7.Guo, W., Iasonna, A., Magini, M., Martelli, S., and F. Padella, J. Mater. Sci. 29, 2436 (1994).CrossRefGoogle Scholar
8.Koch, C. C., Cavin, O. B., Mckamey, C. G., and J. C. Scarbrough, Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
9.Suryanarayana, C. and Froes, F. H., Adv. Mater. 5, 96 (1993).CrossRefGoogle Scholar
10. S. H. Manesh and Flower, H. M., Mater. Sci. Technol. 10, 674 (1994).Google Scholar
11.Okamoto, H., J. Phase Equilibria 14, 120 (1993).CrossRefGoogle Scholar
12.Ahn, J. H., Chung, H. S., Waranade, R., and Park, Y. H., Mater. Sci. Forum 88–90, 347 (1992).CrossRefGoogle Scholar
13.Bonetti, E., Valdre, G., Enzo, S., and Cocco, G., J. Alloys and Compounds 194, 331 (1993).CrossRefGoogle Scholar
14.Murty, B. S., Naik, M. D., Rao, M. Mohan, and Ranganathan, S., Mater. Forum 16, 19 (1992).Google Scholar
15.X-ray Diffraction, edited by Warren, B. E. (Addison-Wesley Publishing Co., Inc., Reading, MA, 1978).Google Scholar
16.Pradhan, S. K., Chakraborty, T., SenGupta, S. P., Suryanarayana, C., Frefer, A., and Froes, F. H., Nanostr. Mater. 5 (1995).CrossRefGoogle Scholar
17.Thermalchemical Properties of Inorganic Substances, edited by Kncke, O., Kubaschewski, O., and Hesselmann, K., 2nd ed. (Springer-Verlag, Berlin, 1991).Google Scholar