Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T13:19:42.592Z Has data issue: false hasContentIssue false

Formation and structure of carbon nanocage structures produced by polymer pyrolysis and electron-beam irradiation

Published online by Cambridge University Press:  31 January 2011

Takeo Oku*
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8–1, Ibaraki, Osaka 567–0047, Japan
Takanori Hirano
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8–1, Ibaraki, Osaka 567–0047, Japan
Katsuaki Suganuma
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8–1, Ibaraki, Osaka 567–0047, Japan
Satoru Nakajima
Affiliation:
Department of Chemistry, Tohoku University, Aramaki, Aoba-ku, Sendai 980–8578, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Carbon nanocapsules with SiC and Au nanoparticles were produced by thermal decomposition of polyvinyl alcohol at about 500 °C in Ar gas atmosphere. The formation mechanism of nanocapsules and a structural model for the nanocapsule/SiC interface were proposed. In addition, carbon clusters were formed at the surface of carbon nanocapsules, and carbon onions were produced by electron irradiation of amorphous carbon produced from polyvinyl alcohol. The present work indicates that the pyrolysis of polymer materials with clusters is a useful fabrication method for the mass production of carbon nanocapsules and onions at low temperatures compared to the ordinary arc discharge method.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kroto, H.W., Heath, J.R., O'Brien, S.C., and Smalley, R.E., Nature (London) 318, 162 (1985).CrossRefGoogle Scholar
2.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
3.Ugarte, D., Nature (London) 359, 707 (1992).CrossRefGoogle Scholar
4.Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., and Hayashi, T., Chem. Phys. Lett. 204, 277 (1993).CrossRefGoogle Scholar
5.Krishnan, A., Dujardin, E., Treacy, M.M.J, Hugdahl, J., Lynum, S., and Ebbesen, T.W., Nature (London) 388, 451 (1997).CrossRefGoogle Scholar
6.Saito, Y., Nature (London) 392, 237 (1998).CrossRefGoogle Scholar
7.Rao, C.N.R, Seshadri, R., Govindaraj, A., and Sen, R., Mater. Sci. Eng. R15, 209 (1995).CrossRefGoogle Scholar
8.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Sumiyama, K., Suzuki, K., Kasuya, A., and Nisina, Y., J. Phys. Chem. Solid 54, 1849 (1993).CrossRefGoogle Scholar
9.Sloan, J., Cook, J., Green, M.L.H, Hutchinson, J.L., and Tenne, R., J. Mater. Chem. 7, 1089 (1997).CrossRefGoogle Scholar
10.Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R., and Tenne, R., Nature (London) 387, 791 (1997).CrossRefGoogle Scholar
11.Elliott, B.R., Host, J.J., Dravid, V.P., Teng, M.H., and Hwang, J-H., J. Mater. Res. 12, 3328 (1997).CrossRefGoogle Scholar
12.Ugarte, D., Chem. Phys. Lett. 198, 596 (1992).CrossRefGoogle Scholar
13.Seraphin, S., Zhou, D., Jiao, J., Withers, J.C., and Loutfy, R., Appl. Phys. Lett. 63, 2073 (1993).CrossRefGoogle Scholar
14.Saito, Y., Carbon 33, 979 (1995).CrossRefGoogle Scholar
15.Saito, Y., Nishikubo, K., Kawabata, K., and Matsumoto, T., J. Appl. Phys. 80, 3062 (1996).CrossRefGoogle Scholar
16.Host, J.J., Teng, M.H., Elliott, B.R., Hwang, J-H., Mason, T.O., Johnson, D.L., and Dravid, V.P., J. Mater. Res. 12, 1268 (1997).CrossRefGoogle Scholar
17.Saito, Y., Matsumoto, T., and Nishikubo, K., J. Cryst. Growth 172, 163 (1997).CrossRefGoogle Scholar
18.Jiao, J. and Seraphin, S., J. Appl. Phys. 83, 2442 (1998).CrossRefGoogle Scholar
19.Oku, T., Niihira, K., and Suganuma, K., J. Mater. Chem. 8, 1323 (1998).CrossRefGoogle Scholar
20.Oku, T., Schmid, G., and Suganuma, K., J. Mater. Chem. 8, 2113 (1998).CrossRefGoogle Scholar
21.Oku, T., Hirano, T., Nakajima, S., Schmid, G., Niihara, K., and Suganuma, K., Nanostruct. Mater. (1999, in press).Google Scholar
22.Krätschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R., Nature (London) 347, 354 (1990).CrossRefGoogle Scholar
23.deHeer, W.A. and Ugarte, D., Chem. Phys. Lett. 207, 480 (1993).CrossRefGoogle Scholar
24.McKay, K.G., Kroto, H.W., and Wales, D.J., J. Chem. Soc., Faraday Trans. 88, 2815 (1992).CrossRefGoogle Scholar
25.Ru, Q., Okamoto, M., Kondo, Y., and Takayanagi, K., Chem. Phys. Lett. 259, 425 (1996).CrossRefGoogle Scholar
26.Xu, B.S. and Tanaka, S-I., Proc. Annu. Meeting Scand. Soc. Electron Microsc. 49, 134 (1997).Google Scholar
27.Shull, R.D., McMichael, R.D., and Ritter, J.J., Nanostruct. Mater. 2, 205 (1993).CrossRefGoogle Scholar
28.Sato, T., Ahmed, H., Brown, D., and Johnson, B.F.G, J. Appl. Phys. 82, 696 (1997).CrossRefGoogle Scholar
29.Klein, D.L., Roth, R., Lim, A.K.L, Alivisatos, A.P., and McEuen, P.L., Nature (London) 389, 699 (1997).CrossRefGoogle Scholar
30.Schmid, G., Chem. Rev. 92, 1709 (1992).CrossRefGoogle Scholar
31.Oku, T. and Nakajima, S., J. Mater. Res. 13, 1136 (1998).CrossRefGoogle Scholar
32.Oku, T., Carlsson, A., Wallenberg, L.R., Malm, J-O., Bovin, J-O., Higashi, I., Tanaka, T., and Ishizawa, Y., J. Solid State Chem. 135, 182 (1998).CrossRefGoogle Scholar
33.Oku, T. and Nakajima, S., Surf. Sci. 407, L647 (1998).CrossRefGoogle Scholar
34.Oku, T. and Bovin, J-O., Philos. Mag. A 79, 821 (1999).CrossRefGoogle Scholar
35.Oku, T., Bovin, J-O., Nakajima, S., Kubota, H., Ohgami, T., and Suganuma, K., Nanostruct. Mater. 12, 563 (1999).CrossRefGoogle Scholar
36.Cowley, J.M. and Moodie, A.F., Acta Crystallogr. 10, 609 (1957).CrossRefGoogle Scholar
37.Cowley, J.M., Diffraction Physics, 2nd revised ed. (North-Holland, Amsterdam, 1981).Google Scholar
38.Bovin, J-O., Wallenberg, R., and Smith, D.J., Nature (London) 317, 47 (1985).CrossRefGoogle Scholar
39.Lamber, R., Jaeger, N., and Schulz-Ekloff, G., Surf. Sci. 197, 402 (1988).CrossRefGoogle Scholar
40.Lamber, R., Jaeger, N., and Schulz-Ekloff, G., Surf. Sci. 227, 15 (1990).CrossRefGoogle Scholar
41.Dresselhaus, M.S. and Dresselhaus, G., Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
42.Suganuma, K., Sasaki, G., Fujita, T., Okumura, M., and Niihara, K., J. Mater. Sci. 28, 1175 (1993).CrossRefGoogle Scholar
43.Wang, C.M., Mitomo, M., and Emoto, H., J. Mater. Res. 12, 3266 (1997).CrossRefGoogle Scholar
44.Kusunoki, M., Rokkaku, M., and Suzuki, T., Appl. Phys. Lett. 71, 2620 (1997).CrossRefGoogle Scholar
45.Harris, P.J.F and Tsang, S.C., Philos. Mag. A 76, 667 (1997).CrossRefGoogle Scholar
46.Piskoti, C., Yarger, J., and Zettl, A., Nature (London) 393, 771 (1998).CrossRefGoogle Scholar
47.Grossman, J.C., Côté, M., Louie, S.G., and Cohen, M.L., Chem. Phys. Lett. 284, 344 (1998).CrossRefGoogle Scholar
48.Yoshida, M. and Osawa, E., Fullerene Sci. Technol. 1993, 1, 55.CrossRefGoogle Scholar
49.York, D., Lu, J.P., and Wang, W., Mod. Phys. Lett. B49, 8526 (1994).Google Scholar
50.Maiti, A., Brabec, C.J., and Bernholc, J., Phys. Rev. Lett. 70, 3023 (1993).CrossRefGoogle Scholar
51.Maiti, A., Brabec, C.J., and Bernholc, J., Mod. Phys. Lett. B47, 1883 (1993).CrossRefGoogle Scholar
52.Ugarte, D., Chem. Phys. Lett. 198, 596 (1992).CrossRefGoogle Scholar
53.Iijima, S., J. Cryst. Growth 50, 675 (1980).CrossRefGoogle Scholar
54.Iijima, S., J. Phys. Chem. 91, 3466 (1987).CrossRefGoogle Scholar
55.Kroto, H., Science 242, 1139 (1988).CrossRefGoogle Scholar
56.Kroto, H.W., Nature (London) 359, 670 (1992).CrossRefGoogle Scholar
57.Terrones, H. and Terrones, M., J. Phys. Chem. Solids 58, 1789 (1997).CrossRefGoogle Scholar