Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T00:28:29.447Z Has data issue: false hasContentIssue false

Flame Synthesis of Y2O3:Eu Nanophosphors Using Ethanol as Precursor Solvents

Published online by Cambridge University Press:  03 March 2011

Xiao Qin
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
Yiguang Ju
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
Stefan Bernhard
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08544
Nan Yao
Affiliation:
Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

Y2O3:Eu nanophosphors were prepared by flame synthesis using ethanol or water as precursor solutions. The effects of precursor solvents and flame temperature on particle size, morphology, and photoluminescence intensity were investigated. The results showed that flame synthesis using ethanol solution could produce nanoparticles with better homogeneity, smoother surface structure, and stronger photoluminescence intensity than using water. It was found that the concentration quenching limit of the as-prepared nanophosphors from both ethanol and water solution was 18 mol% Eu, which is higher than the reported limit at similar particle size. The x-ray diffraction (XRD) spectra showed that the ethanol precursor solvent produced monoclinic phase Y2O3:Eu nanoparticles at a lower flame temperature than previously reported. It was also shown that the particle size could be controlled by varying the precursor concentration and flame temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kruis, F.E., Fissan, H. and Peled, A.: Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—A review. J. Aerosol Sci. 29, 511 (1998).CrossRefGoogle Scholar
2Bhargava, R.N., Gallagher, D., Hong, X. and Nurmikko, A.: Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416 (1994).CrossRefGoogle ScholarPubMed
3Suryanarayana, C.: Nanocrystalline materials. Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
4Bhargava, R.N.: Doped nanocrystalline materials—Physics and applications. J. Lumin. 70, 85 (1996).CrossRefGoogle Scholar
5Rao, R.P.: Preparation and characterization of fine-grain yttrium-based phosphors by sol-gel process. J. Electrochem. Soc. 143, 189 (1996).CrossRefGoogle Scholar
6Bazzi, R., Flores, M.A., Louis, C., Lebbou, K., Zhang, W., Dujardin, C., Roux, X., Mercier, B., Ledoux, G., Bernstein, E., Perriat, P. and Tillement, O.: Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu. J. Colloid Int. Sci. 273, 191 (2004).CrossRefGoogle Scholar
7Yoffe, A.D.: Low-dimensional systems: Quantum-size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173 (1993).CrossRefGoogle Scholar
8Blasse, G. and Grabmaier, B.C.: Luminescent Materials (Springer, Berlin, Germany, 1994).CrossRefGoogle Scholar
9Goldburt, E.T., Kulkarni, B., Bhargava, R., Taylor, J. and Libera, M.: Size dependent efficiency in Tb doped Y2O3 nanocrystalline phosphor. J. Lumin. 190, 72 (1997).Google Scholar
10Rao, C.N.R.: Chemical synthesis of solid inorganic materials. Mater. Sci. Eng. B 18, 1 (1993).CrossRefGoogle Scholar
11He, C., Guan, Y., Yao, L., Cai, W., Li, X. and Yao, Z.: Synthesis and photoluminescence of nano-Y2O3:Eu3+ phosphors. Mater. Res. Bull. 38, 973 (2003).CrossRefGoogle Scholar
12Sharma, P.K., Jilavi, M.H., Nass, R. and Schmidt, H.: Tailoring the particle size from μm → nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria. J. Lumin. 82, 187 (1999).CrossRefGoogle Scholar
13Eilers, H. and Tissue, B.M.: Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3. Chem. Phys. Lett. 251, 74 (1996).CrossRefGoogle Scholar
14Konrad, A., Fries, T., Gahn, A., Kummer, F., Herr, U., Tidecks, R. and Samwer, K.: Chemical vapor synthesis and luminescence properties of nanocrystalline cubic Y2O3:Eu. J. Appl. Phys. 86, 3129 (1999).CrossRefGoogle Scholar
15Huang, H., Xu, G.Q., Chin, W.S., Gan, L.M. and Chew, C.H.: Synthesis and characterization of Eu:Y2O3 nanoparticles. Nanotechnology 12, 318 (2002).CrossRefGoogle Scholar
16Pang, Q., Shi, J., Liu, Y., Xing, D., Gong, M. and Xu, N.: A novel approach for preparation of Y2O3:Eu3+ nanoparticles by microemulsion-microwave heating. Mater. Sci. Eng. B 103, 57 (2003).CrossRefGoogle Scholar
17Kang, Y.C., Park, S.B., Lenggoro, I.W. and Okuyama, K.: Preparation of nonaggregated Y2O3:Eu phosphor particles by spray pyrolysis method. J. Mater. Res. 14, 2611 (1999).CrossRefGoogle Scholar
18Tao, Y., Zhao, G.W., Zhang, W.P. and Xia, S.D.: Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors. Mater. Res. Bull. 32, 501 (1997).Google Scholar
19Kang, Y.C., Seo, D.J., Park, S.B. and Park, H.D.: Morphological and optical characteristics of Y2O3:Eu phosphor particles prepared by flame spray pyrolysis. Jpn. J. Appl. Phys. 40, 4083 (2001).CrossRefGoogle Scholar
20Pratsinis, S.E.: Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24, 197 (1998).CrossRefGoogle Scholar
21Kammler, H.K., Madler, L. and Pratsinis, S.E.: Flame synthesis of nanoparticles. Chem. Eng. Technol. 24, 6 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
22Mädler, L., Kammler, H.K., Mueller, R. and Pratsinis, S.E.: Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33, 369 (2002).CrossRefGoogle Scholar
23Glumac, N.G., Chen, Y.J., Skandan, G. and Kear, B.: Scalable high-rate production of non-agglomerated nanopowders in low pressure flames. Mater. Lett. 34, 148 (1998).CrossRefGoogle Scholar
24Tanner, P.A. and Wong, K.L.: Synthesis and spectroscopy of lanthanide ion-doped Y2O3. J. Phys. Chem. B 108, 136 (2004).CrossRefGoogle Scholar
25Chang, H., Lenggoro, I.W., Okuyama, K. and Kim, T.O.: Continuous single-step fabrication of nonaggreated, size-controlled and cubic nanocrystalline Y2O3:Eu3+ phosphors using flame spray pyrolysis. Jpn. J. Appl. Phys. 43, 3535 (2004).CrossRefGoogle Scholar
26Lenggoro, I.W., Hata, T. and Iskandar, F.: An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. J. Mater. Res. 15, 733 (2000).CrossRefGoogle Scholar
27Kee, R.J., Grcar, J.F., Smooke, M.D. and Miller, J.A. CHEMKIN-II: A fortan chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. SANDIA report SAND85-8240, (Sandia National Laboratories, Albuquerque, NM, 1994).Google Scholar
28Limaye, A.U. and Helble, J.J.: Effect of precursor and solvent on morphology of zirconia nanoparticles produced by combustion aerosol synthesis. J. Am. Ceram. Soc. 86, 273 (2003).CrossRefGoogle Scholar
29Okumura, M., Tamatani, M., Albessard, A.K. and Matsuda, N.: Luminescence properties of rare earth io-doped monoclinic yttrium sesquioxide. Jpn. J. Appl. Phys. 36, 6411 (1997).CrossRefGoogle Scholar
30Shea, L.E., McKittrick, J., Lopez, O.A. and Sluzky, E.: Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process. J. Am. Ceram. Soc. 79, 3257 (1996).CrossRefGoogle Scholar
31Zhang, W-W., Zhang, W-P., Xie, P-B., Chen, M.Y.H-T., Jing, L., Zhang, Y-S., Lou, L-R. and Xia, S-D. Optical properties of nanocrystalline Y2O3: Eu depending on its odd structure. J. Colloid Interface. Sci. 262, 588 (2003).CrossRefGoogle Scholar
32 The International Centre for Diffraction Data, http://www.icdd.com, PDF#25-1011a.Google Scholar
33 The International Centre for Diffraction Data, http://www.icdd.com, PDF #44-0399.Google Scholar