Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T11:43:37.041Z Has data issue: false hasContentIssue false

Fine-Grain Processing by Equal Channel Angular Extrusion of Rapidly Quenched Bulk Mg–Y–Zn Alloy

Published online by Cambridge University Press:  03 March 2011

Hiroyuki Watanabe
Affiliation:
Osaka Municipal Technical Research Institute, Osaka 536–8553, Japan
Hidetoshi Somekawa
Affiliation:
Department of Metallurgy and Materials Science, Osaka Prefecture University,Sakai 599–8531, Japan
Kenji Higashi
Affiliation:
Department of Metallurgy and Materials Science, Osaka Prefecture University,Sakai 599–8531, Japan
Get access

Abstract

The fine-grain processing of ingot metallurgy (IM) Mg–Y–Zn alloy, WZ73, was investigated. The alloy was initially produced by casting into a copper mold at a cooling rate of ∼50 K/s. The rapidly quenched bulk material was processed by means of equal channel angular extrusion (ECAE). The ECAE-processed material had equiaxed grains of 5.1 μm in size, and fine second-phase particles of Mg12YZn were dispersed in the grain boundaries. The Vickers hardness of the ECAE-processed material was 78. The dispersion of the second-phase particles, solid solution strengthening, and grain refinement contributed to the material’s hardness. The structure remained virtually unchanged, at least up to 673 K because the Mg12YZn phase served to pin the grain boundaries. The microstructure of IM WZ73 alloy, which is a suitable starting material for ECAE, was also considered.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1King, J.F. Development of magnesium die casting alloys, in Magnesium Alloys and their Applications , edited by Mordike, B.L. and Kainer, K.U. (Werkstoff-Informationsgesellschaft, Frankfurt, Germany, 1998) p. 37.Google Scholar
2Nussbaum, G., Saintfort, P., Regazzoni, G. and Gjestland, H.: Strengthening mechanisms in the rapidly solidified AZ91 magnesium alloy. Scripta Metall. 23, 1079 (1989).CrossRefGoogle Scholar
3Lahaie, D., Embury, J.D., Chadwick, M.M. and Gray, G.T.: A note on the deformation of fine grained magnesium alloys. Scripta Metall. Mater. 27, 139 (1992).CrossRefGoogle Scholar
4Kubota, K., Mabuchi, M. and Higashi, K.: Processing and mechanical properties of fine-grained magnesium alloys. J. Mater. Sci. 34, 2255 (1999).CrossRefGoogle Scholar
5Mohri, T., Mabuchi, M., Saito, N. and Nakamura, M.: Microstructure and mechanical properties of a Mg–4Y–3RE alloy processed by thermo-mechanical treatment. Mater. Sci. Eng. A 257, 287 (1998).CrossRefGoogle Scholar
6Mukai, T., Yamanoi, M., Watanabe, H., Ishikawa, K. and Higashi, K.: Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading. Mater. Trans. 42, 1177 (2001).CrossRefGoogle Scholar
7Mukai, T., Mohri, T., Mabuchi, M., Nakamura, M., Ishikawa, K. and Higashi, K.: Experimental study of a structural magnesium alloy with high absorption energy under dynamic loading. Scripta Mater. 39, 1249 (1998).CrossRefGoogle Scholar
8Mukai, T., Yamanoi, M. and Higashi, K.: Ductility enhancement in magnesium alloys under dynamic loading. Mater. Sci. Forum 350, 97 (2000).CrossRefGoogle Scholar
9Polmear, I.J.: Magnesium alloys and applications. Mater. Sci. Tech. 10, 1 (1994).CrossRefGoogle Scholar
10Koike, J., Ohyama, R., Kobayashi, T., Suzuki, M. and Maruyama, K.: Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Mater. Trans. 44, 445 (2003).CrossRefGoogle Scholar
11Watanabe, H., Mukai, T., Sugioka, M. and Ishikawa, K.: Elastic and damping properties from room temperature to 673 K in an AZ31 magnesium alloy. Scripta Mater. 51, 291 (2004).CrossRefGoogle Scholar
12Nakashima, K., Iwasaki, H., Mori, T., Mabuchi, M., Nakamura, M. and Asahina, T.: Mechanical properties of a powder metallurgy processed Mg–5Y–6RE alloy. Mater. Sci. Eng. A 293, 15 (2000).CrossRefGoogle Scholar
13Wang, J.G., Hsiung, L.M., Nieh, T.G. and Mabuchi, M.: Creep of a heat treated Mg–4Y–3RE alloy. Mater. Sci. Eng. A 315, 81 (2001).CrossRefGoogle Scholar
14Mordike, B.L.: Creep-resistant magnesium alloys. Mater. Sci. Eng. A 324, 103 (2002).CrossRefGoogle Scholar
15Yuan, G., Amiya, K., Kato, H. and Inoue, A.: Structure and mechanical properties of cast quasicrystal-reinforced Mg–Zn–Al–Y base alloys. J. Mater. Res. 19, 1531 (2004).CrossRefGoogle Scholar
16Inoue, A., Kawamura, Y., Matsubara, M., Hayashi, K. and Koike, J.: Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg–Zn–Y system. J. Mater. Res. 16, 1984 (2001).CrossRefGoogle Scholar
17Kawamura, Y., Hayashi, K., Inoue, A. and Masumoto, T.: Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa. Mater. Trans. 42, 1172 (2001).CrossRefGoogle Scholar
18Okumura, H., Kamado, S., Kojima, Y., Watanabe, H. and Kawamura, Y.: Microstructure and tensile properties of ECAE-processed Mg–Zn–Y alloys, in Abstracts of the 101th Conference of Japan Inst. Light Metals, Tokyo, Japan, 313 2001.Google Scholar
19Ping, D.H., Hono, K., Kawamura, Y. and Inoue, A.: Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy. Philos. Mag. Lett. 82, 543 (2002).CrossRefGoogle Scholar
20Matsuda, M., Kawamura, Y. and Nishida, M.: Production of high strength Mg97Zn1Y2 alloy by using mechanically alloyed MgH2 powder. Mater. Trans. 44, 440 (2003).CrossRefGoogle Scholar
21Watanabe, H., Mukai, T., Kamado, S., Kojima, Y. and Higashi, K.: Mechanical properties of Mg–Y–Zn alloy processed by equal-channel-angular extrusion. Mater. Trans. 44, 463 (2003).CrossRefGoogle Scholar
22Nishida, M., Yamamuro, T., Nagano, M., Morizono, Y. and Kawamura, Y.: Electron microscopy study of microstructure modifications in RS P/M Mg97Zn1Y2 alloy. Mater. Sci. Forum 419, 715 (2003).CrossRefGoogle Scholar
23Itoi, T., Seimiya, T., Kawamura, Y. and Hirohashi, M.: Microstructure of high strength Mg97Zn1Y2 alloys prepared by extrusion of gas-atomized powder. Mater. Sci. Forum 419, 721 (2003).CrossRefGoogle Scholar
24Abe, E., Kawamura, Y. and Inoue, A.: Microstructure of a high-strength nanocrystalline Mg–1at.%Zn–2at.%Y alloy studied by atomic-resolution Z-contrast STEM. Mater. Sci. Forum 419, 727 (2003).CrossRefGoogle Scholar
25Mabuchi, M., Chino, Y. and Iwasaki, H.: Tensile properties at room temperature to 823 K of Mg–4Y–3RE alloy. Mater. Trans. 43, 2063 (2002).CrossRefGoogle Scholar
26Watanabe, H., Mukai, T., Ishikawa, K., Mohri, T., Mabuchi, M. and Higashi, K.: Superplasticity of a particle-strengthened WE43 magnesium alloy. Mater. Trans. 42, 157 (2001).CrossRefGoogle Scholar
27Watanabe, H., Mukai, T. and Higashi, K.: Grain refinement in superplasticity in magnesium alloys, in Ultrafine Grained Materials II , edited by Zhu, Y.T., Langdon, T.G., Mishra, R.S., Semiatin, S.L., Saran, M.J., and Lowe, T.C. (TMS, Warrendale, PA,2002), p. 469.CrossRefGoogle Scholar
28Watanabe, H., Mukai, T., Ishikawa, K., Mabuchi, M. and Higashi, K.: Realization of high-strain-rate superplasticity at low temperatures in a Mg–Zn–Zr alloy. Mater. Sci. Eng. A 307, 119 (2001).CrossRefGoogle Scholar
29Mabuchi, M., Ameyama, K., Iwasaki, H. and Higashi, K.: Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries. Acta Mater. 47, 2047 (1999).CrossRefGoogle Scholar
30Watanabe, H., Mukai, T., Ishikawa, K. and Higashi, K.: Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Mater. 46, 851 (2002).CrossRefGoogle Scholar
31Horita, Z., Matsubara, K., Makii, K. and Langdon, T.G.: A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys. Scripta Mater. 47, 255 (2002).CrossRefGoogle Scholar
32Matsubara, K., Miyahara, Y., Horita, Z. and Langdon, T.G.: Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater. 51, 3037 (2003).CrossRefGoogle Scholar
33Kim, W.J., Hong, S.I., Kim, Y.S., Min, S.J., Jeong, H.T. and Lee, J.D.: Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater. 51, 3293 (2003).CrossRefGoogle Scholar
34Cáceres, C.H., Davidson, C.J., Griffiths, J.R. and Newton, C.L.: Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Mater. Sci. Eng. A 325, 344 (2002).CrossRefGoogle Scholar
35Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G.: The process of grain refinement in equal-channel angular pressing. Acta Mater. 46, 3317 (1998).CrossRefGoogle Scholar
36Walker, C.B. and Marezio, M.: Lattice parameters and zone overlap in solid solutions of lead in magnesium. Acta Metall. 7, 769 (1959).CrossRefGoogle Scholar
37Luo, Z.P. and Zhang, S.Q.: High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg–Zn–Zr–Y magnesium alloy. J. Mater. Sci. Lett. 19, 813 (2000).CrossRefGoogle Scholar
38Hanawa, S., Sugamata, M. and Kaneko, J.: Structures and mechanical properties of rapidly solidified Mg–Y based alloys. J. Japan Inst. Light Metals. 47, 84 (1997).CrossRefGoogle Scholar
39 Metals Data Book, 3rd ed., (The Japan Inst. Metals, Maruzen, Tokyo, Japan, 1993), pp. 38, 40.Google Scholar
40Watanabe, H., Mukai, T., Ishikawa, K. and Higashi, K.: High-strain-rate superplasticity in an AZ91 magnesium alloy processed by ingot metallurgy route. Mater. Trans. 43, 78 (2002).CrossRefGoogle Scholar
41Mabuchi, M., Asahina, T., Iwasaki, H. and Higashi, K.: Experimental investigation of superplastic behaviour in magnesium alloys. Mater. Sci. Tech. 13, 825 (1997).CrossRefGoogle Scholar
42Mabuchi, M. and Higashi, K.: Processing of high-strain-rate superplastic Si3N4w/Al–Mg–Si composite. J. Mater. Res. 10, 2494 (1995).CrossRefGoogle Scholar
43Armstrong, R.W.: The influence of polycrystal grain size on several mechanical properties. Metall. Trans. 1, 1169 (1970).CrossRefGoogle Scholar
44Ono, N., Nowak, R. and Miura, S.: Effect of deformation temperature on Hall–Petch relationship registered for polycrystalline magnesium. Mater. Lett. 58, 39 (2003).CrossRefGoogle Scholar
45Mabuchi, M., Chino, Y., Iwasaki, H., Aizawa, T. and Higashi, K.: The grain size and texture dependence of tensile properties in extruded Mg–9Al–1Zn. Mater. Trans. 42, 1182 (2001).CrossRefGoogle Scholar
46Yoshida, Y., Cisar, L., Kamado, S. and Kojima, Y.: Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy. Mater. Trans. 44, 468 (2003).CrossRefGoogle Scholar
47Ashby, M.F. and Jones, D.R.: Engineering Materials 1, 2nd ed. (Butterworth-Heinemann, Burlington, MA, 1996), p. 113.Google Scholar
48Rao, G.S. and Prasad, Y.V.R.K.: Grain boundary strengthening in strongly textured magnesium produced by hot rolling. Metall. Trans. 13A, 2219 (1982).CrossRefGoogle Scholar