Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T13:00:00.621Z Has data issue: false hasContentIssue false

Ferromagnetism induced by lattice volume expansion and amorphization in EuTiO3 thin films

Published online by Cambridge University Press:  03 April 2013

Katsuhisa Tanaka*
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Koji Fujita
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Yuya Maruyama
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Yoshiro Kususe
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Hideo Murakami
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Hirofumi Akamatsu
Affiliation:
Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
Yanhua Zong
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Shunsuke Murai
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Lattice volume expansion or amorphization renders EuTiO3 ferromagnetic, although the stable phase of crystalline EuTiO3 is an antiferromagnet. The lattice volume expansion is induced into the crystalline EuTiO3 thin film by utilizing the lattice mismatch between the thin film and a substrate. The magnetization at low temperatures monotonically increases with an increase in lattice volume for the crystalline EuTiO3 thin film, coincident with the results of calculations based on the hybrid Hartree–Fock density functional approach. The ferromagnetic interaction between Eu2+ ions is enhanced by the amorphization as well; the amorphous EuTiO3 thin film becomes a ferromagnet, and the Curie temperature is higher for amorphous Eu2TiO4 than for its crystalline counterpart. The phenomenon, that is, the volume expansion- and amophization-induced ferromagnetism, is explained in terms of the competition between ferromagnetic and antiferromagnetic interactions among Eu2+ ions.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schooley, J.F., Hosler, W.R., Ambler, E., Becker, J.H., Cohen, M.L., and Koonce, C.S.: Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3. Phys. Rev. Lett. 14, 305 (1965).CrossRefGoogle Scholar
Baratoff, A. and Binnig, G.: Mechanism of superconductivity in SrTiO3. Physica B 108, 1335 (1981).CrossRefGoogle Scholar
Leitner, A., Rogers, C.T., Price, J.C., Rudman, D.A., and Herman, D.R.: Pulsed laser deposition of superconducting Nb-doped strontium titanate thin films. Appl. Phys. Lett. 72, 3065 (1998).Google Scholar
Olaya, D., Pan, F., Rogers, C.T., and Price, J.C.: Superconductivity in La-doped strontium titanate thin films. Appl. Phys. Lett. 84, 4020 (2004).CrossRefGoogle Scholar
Reyren, N., Thiel, S., Caviglia, A.D., Fitting Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A-S., Jaccard, D., Gabay, M., Muller, D. A., Triscone, J.-M., and Mannhart, J.: Superconducting interfaces between insulating oxides. Science 317, 1196 (2007).Google Scholar
Ohta, H., Kim, S., Mune, Y., Mizoguchi, T., Nomura, K., Ohta, S., Nomura, T., Nakanishi, Y., Ikuhara, Y., Hirano, M., Hosono, H., and Koumoto, K.: Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129 (2007).Google Scholar
Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H.: Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413 (1994).CrossRefGoogle ScholarPubMed
Chahara, K., Ohno, T., Kasai, M., and Kozono, Y.: Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett. 63, 1990 (1993).Google Scholar
Tokura, Y., Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Furukawa, N.: Giant magnetotransport phenomena in filling-controlled Kondo lattice system: La1-xSrxMnO3. J. Phys. Soc. Jpn. 63, 3931 (1994).CrossRefGoogle Scholar
Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y.: Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys. Rev. B 51, 14103 (1995).CrossRefGoogle ScholarPubMed
von Helmolt, R., Holzapfel, M.B., Schultz, L., and Samwer, K.: Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
Tomioka, Y., Asamitsu, A., Moritomo, Y., and Tokura, Y.: Anomalous magnetotransport properties of Pr1-xCaxMnO3. J. Phys. Soc. Jpn. 64, 3626 (1995).Google Scholar
Cheong, S.W. and Mostovoy, M.: Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007).Google Scholar
Tokura, Y.: Mltiferroics as quantum electromagnets. Science 312, 1481 (2006).CrossRefGoogle ScholarPubMed
Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takano, M., and Tokura, Y.: Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401 (2003).Google Scholar
Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).CrossRefGoogle ScholarPubMed
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 55 (2003).Google Scholar
McGuire, T.R., Shafer, M.W., Joenk, R.J., Alperin, H.A., and Pickart, S.J.: Magnetic structure of EuTiO3. J. Appl. Phys. 37, 981 (1966).Google Scholar
Chien, C-L., DeBenedetti, S., and Barros, F.D.S.: Magnetic properties of EuTiO3, Eu2TiO4, and Eu3Ti2O7. Phys. Rev. B 10, 3913 (1974).CrossRefGoogle Scholar
Katsufuji, T. and Takagi, H.: Coupling between magnetism and dielectric properties in quantum paraelectric EuTiO3. Phys. Rev. B 64, 054415 (2001).CrossRefGoogle Scholar
Viallet, V., Marucco, J-F., Saint, J., Herbst-Ghysel, M., and Dragoe, N.: Structural, magnetic and electrical properties of a perovskite containing divalent europium EuZrO3. J. Alloys Compd. 461, 346 (2008).CrossRefGoogle Scholar
Zong, Y., Fujita, K., Akamatsu, H., Murai, S., and Tanaka, K.: Antiferromagnetism of perovskite EuZrO3. J. Solid State Chem. 183, 168 (2010).Google Scholar
Kolodiazhnyi, T., Fujita, K., Wang, L., Zong, Y., Tanaka, K., Sakka, Y., and Takayama-Muromachi, E.: Magnetodielectric effect in EuZrO3. Appl. Phys. Lett. 96, 252901 (2010).CrossRefGoogle Scholar
Fennie, C.J. and Rabe, K.M.: Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006).CrossRefGoogle ScholarPubMed
Ranjan, R., Nabi, H.S., and Pentcheva, R.: Electronic structure and magnetism of EuTiO3: A first-principles study. J. Phys. Condens. Matter 19, 406217 (2007).CrossRefGoogle ScholarPubMed
Akamatsu, H., Kumagai, Y., Oba, F., Fujita, K., Murakami, H., Tanaka, K., and Tanaka, I.: Antiferromagnetic superexchange via 3d states of titanium in EuTiO3 as seen from hybrid Hartree-Fock density functional calculations. Phys. Rev. B 83, 214421 (2011).Google Scholar
Fujita, K., Wakasugi, N., Murai, S., Zong, Y., and Tanaka, K.: High-quality antiferromagnetic EuTiO3 epitaxial thin films on SrTiO3 prepared by pulsed laser deposition and post-annealing. Appl. Phys. Lett. 94, 062512 (2009).Google Scholar
Lee, J.H., Fang, L., Vlahos, E., Ke, X., Jung, Y.W., Fitting Kourkoutis, L., Kim, J-W., Ryan, P.J., Heeg, T., Roeckerath, M., Goian, V., Bernhagen, M., Uecker, R., Hammel, P.C., Rabe, K.M., Kamba, S., Schubert, J., Freeland, J.W., Muller, D.A., Fennie, C.J., Schiffer, P., Gopalan, V., Johnston-Halperin, E., and Schlom, D.G.: A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954 (2010).CrossRefGoogle Scholar
Akamatsu, H., Fujita, K., Zong, Y., Takemoto, N., Murai, S., and Tanaka, K.: Impact of amorphization on the magnetic properties of EuO-TiO2 system. Phys. Rev. B 82, 224403 (2010).Google Scholar
Zong, Y., Fujita, K., Akamatsu, H., Nakashima, S., Murai, S., and Tanaka, K.: Local structure of amorphous EuO-TiO2 thin films probed by x-ray absorption fine structure. J. Am. Ceram. Soc. 95, 716 (2012).CrossRefGoogle Scholar
Takahashi, K.S., Onoda, M., Kawasaki, M., Nagaosa, N., and Tokura, Y.: Control of the anomalous Hall effect by doping in Eu1-xLaxTiO3 thin films. Phys. Rev. Lett. 103, 057204 (2009).Google Scholar
Anderson, P.W.: New approach to the theory of superexchange interactions. Phys. Rev. 115, 2 (1959).Google Scholar
Shafer, M.W.: Preparation and crystal chemistry of divalent europium compounds. J. Appl. Phys. 36, 1145 (1965).Google Scholar
Kunes, J., Ku, W., and Pickett, W.E.: Exchange coupling in Eu monochalcogenides from first principles. J. Phys. Soc. Jpn. 74, 1408 (2005).CrossRefGoogle Scholar
Souza-Neto, N.M., Haskel, D., Tseng, Y-C., and Lapertot, G.: Pressure-induced electronic mixing and enhancement of ferromagnetic ordering in EuX (X=Te, Se, S, O) magnetic semiconductors. Phys. Rev. Lett. 102, 057206 (2009).Google Scholar
Greedan, J. and McCarthy, G. J.: Crystal chemistry and magnetic properties of Eu2TiO4 and Eu3Ti2O7. Mater. Res. Bull. 7, 531 (1972).CrossRefGoogle Scholar
Sanchez, J.P., Friedt, J.M., Horne, R., and Van Duyneveldt, A.J.: Spin glass transition hyperfine parameters FeO-Al2O3-SiO2 glasses. J. Phys. C: Solid State Phys. 17, 127 (1984).Google Scholar
Lau, G.C., Klimczuk, T., Ronning, F., McQueen, T.M., and Cava, R.J.: Magnetic properties of the garnet and glass forms of Mn3Al2Si3O12. Phys. Rev. B 80, 214414 (2009).Google Scholar
Nakamura, S., Soeya, S., Ikeda, N., and Tanaka, M.: Spin-glass behavior in amorphous BiFeO3. J. Appl. Phys. 74, 5652 (1993).Google Scholar
Mukadam, M.D., Yusuf, S.M., Sharma, P., Kulshreshtha, S.K., and Dey, G.K.: Dynamics of spin clusters in amorphous Fe2O3. Phys. Rev. B 72, 174408 (2005).CrossRefGoogle Scholar
Akamatsu, H., Tanaka, K., Fujita, K., and Murai, S.: Spin dynamics in Fe2O3-TeO2 glass: Experimental evidence for an amorphous oxide spin glass. Phys. Rev. B 74, 012411 (2006).Google Scholar
Akamatsu, H., Tanaka, K., Fujita, K., and Murai, S.: Spin dynamics in oxide glass of Fe2O3-Bi2O3-B2O3 system. J. Magn. Magn. Mater. 310, 1506 (2007).Google Scholar
Tanaka, K., Akamatsu, H., Nakashima, S., and Fujita, K.: Magnetic properties of disordered oxides with iron and manganese ions. J. Non-Cryst. Sol. 354, 1346 (2008).Google Scholar
Akamatsu, H., Tanaka, K., Fujita, K., and Murai, S.: Magnetic phase transitions in Fe2O3-Bi2O3-B2O3 glasses. J. Phys. Condens. Matter 20, 235216 (2008).Google Scholar
Akamatsu, H., Fujita, K., Murai, S., and Tanaka, K.: Magneto-optical properties of transparent divalent iron phosphate glasses. Appl. Phys. Lett. 92, 251908 (2008).CrossRefGoogle Scholar
Akamatsu, H., Oku, S., Fujita, K., Murai, S., and Tanaka, K.: Magnetic properties of mixed-valence iron phosphate glasses. Phys. Rev. B 80, 134408 (2009).Google Scholar
Bhide, V.G. and Multani, M.S.: Mössbauer effect in ferroelectric-antiferromagnetic BiFeO3. Solid State Commun. 3, 271 (1965).CrossRefGoogle Scholar
Schoenes, J., Kaldis, E., Thöni, W., and Wachter, P.: Optical, magnetic, and magnetooptical properties of the europium silicate Glass Eu0.14Si0.31O0.55. Phys. Status Solidi A 51, 173 (1979).Google Scholar
Akamatsu, H., Fujita, K., Murai, S., and Tanaka, K.: Ferromagnetic Eu2+-based oxide glasses with reentrant spin glass behavior. Phys. Rev. B 81, 014423 (2010).CrossRefGoogle Scholar
Matthias, B.T., Bozorth, R.M., and Van Vleck, J.H.: Ferromagnetic interaction in EuO. Phys. Rev. Lett. 7, 160 (1961).Google Scholar
Zong, Y., Fujita, K., Akamatsu, H., Murai, S., and Tanaka, K.: Ferromagnetic properties with reentrant spin-glass behavior in amorphous EuZrO3 thin film. Phys. Status Solidi C 8, 3051 (2011).Google Scholar