Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T11:44:09.236Z Has data issue: false hasContentIssue false

Fe-based bulk metallic glasses Fe73.8−xC7.0Si3.5BxP9.6Cr2.1Mo2.0Al2.0 (x = 3∼9) prepared using hot metal and industrial raw materials

Published online by Cambridge University Press:  03 March 2011

Hongxiang Li
Affiliation:
Department of Materials Science and Metallurgy, Kyungpook National University, Daegu 702-701, South Korea
Seonghoon Yi*
Affiliation:
Department of Materials Science and Metallurgy, Kyungpook National University, Daegu 702-701, South Korea
Ho Sang Sohn
Affiliation:
Department of Materials Science and Metallurgy, Kyungpook National University, Daegu 702-701, South Korea
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

For extensive applications of bulk metallic glasses as structural materials, Fe-based bulk metallic glasses Fe73.8−xC7.0Si3.5BxP9.6Cr2.1Mo2.0Al2.0 (at.%, x = 3, 5, 7, 9) have been developed using hot metal, commercial grade pure elements, and industrial ferro-alloys. The alloy Fe68.8C7.0Si3.5B5P9.6Cr2.1Mo2.0Al2.0 can be cast into a fully amorphous rod of 5 mm in diameter through a suction casting method. The glass forming ability of the alloys can be successfully assessed by the difference of Gibbs free energy between liquid and solid phases obtained through thermodynamic calculations.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
2Ponnambalam, V., Poon, S. Joseph, and Shiflet, J.G.: Fe-Mn-Cr-Mo-(Y,Ln)-C-B (Ln=Lanthanides) bulk metallic glasses as formable amorphous steel alloys. J. Mater. Res. 19, 3046 (2004).CrossRefGoogle Scholar
3Lu, Z.P., Liu, C.T., Thompson, J.R., and Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).CrossRefGoogle ScholarPubMed
4Ponnambalam, V., Poon, S.J., Shiflet, J.G., Keppens, V.M., Taylor, R., and Petculescu, G.: Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys. Appl. Phys. Lett. 83, 1131 (2003).CrossRefGoogle Scholar
5Pang, S.J., Zhang, T., Asami, K., and Inoue, A.: Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 50, 489 (2002).CrossRefGoogle Scholar
6Pang, S.J., Zhang, T., Asami, K., and Inoue, A.: Bulk glassy Fe–Cr–Mo–C–B alloys with high corrosion resistance. Corros. Sci. 44, 1847 (2002).CrossRefGoogle Scholar
7Sun, Y.F., Wei, B.C., Wang, Y.R., Li, W.H., and Shek, C.H.: Enhanced plasticity of Zr-based bulk metallic glass matrix composite with ductile reinforcement. J. Mater. Res. 20, 2386 (2005).CrossRefGoogle Scholar
8Kim, Y.C., Fleury, E., Lee, J-C., and Kim, D.H.: Origin of simultaneous improvement of strength and plasticity in Ti-based bulk metallic glass matrix composites. J. Mater. Res. 20, 2474 (2005).CrossRefGoogle Scholar
9Ponnambalam, V., Poon, S. Joseph, and Shiflet, J.G.: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).CrossRefGoogle Scholar
10Inoue, A., Komuro, M., and Masumoto, T.: Iron-silicon-boron amorphous alloys with high silicon concentration. J. Mater. Sci. 19, 4125 (1984).CrossRefGoogle Scholar
11Figueroa, A.I., Betancourt, I., Lara, G., and Verduzco, A.J.: Effect of B, Si and Cr on the mechanical properties of Fe-based amorphous metallic ribbons. J. Non-Cryst. Solids 351, 3075 (2005).CrossRefGoogle Scholar
12Inoue, A. and Wang, X.M.: Bulk amorphous FC20(Fe-C-Si) alloys with small amounts of B and their crystallized structure and mechanical properties. Acta Mater. 48, 1383 (2000).CrossRefGoogle Scholar
13Shapaan, M., Lendvai, J., and Varga, L.K.: Influence of B and P content on the thermal stability and crystallization of cast iron based bulk amorphous alloys. J. Non-Cryst. Solids 330, 150 (2003).CrossRefGoogle Scholar
14Lu, Z.P. and Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).CrossRefGoogle Scholar
15Inoue, A., Shen, B.L., and Chang, C.T.: Fe- and Co-based bulk glassy alloys with ultra high strength of over 4000MPa. Intermetallics 14, 936 (2006).CrossRefGoogle Scholar
16Amiya, K. and Inoue, A.: Fe-(Cr, Mo)-(C,B)-Tm bulk metallic glasses with high strength and high glass-forming ability. Mater. Trans., JIM 47, 1615 (2006).CrossRefGoogle Scholar
17Shen, J., Chen, Q., Sun, J., Fan, H., and Wang, G.: Exceptionally high glass-forming ability of a FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 (2005).CrossRefGoogle Scholar
18Chen, Q.J., Fan, H.B., Ye, L., Ringer, S., Sun, J.F., Shen, J., and McCartney, D.G.: Enhanced glass forming ability of Fe-Co-Zr-Mo-W-B alloys with Ni addition. Mater. Sci. Eng., A 402, 188 (2005).CrossRefGoogle Scholar
19Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
20Zhang, T., Inoue, A., and Asumoto, T.: Amorphous Zr-Al-TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans., JIM 32, 1005 (1991).CrossRefGoogle Scholar
21Park, E.S., Kim, D.H., and Kim, W.T.: Parameter for glass forming ability of ternary alloy systems. Appl. Phys. Lett. 86, 061907 (2005).CrossRefGoogle Scholar
22Shen, T.D. and Schwarz, R.B.: Bulk ferromagnetic glasses prepared by flux melting and water quenching. Appl. Phys. Lett. 75, 49 (1999).CrossRefGoogle Scholar
23Waniuk, T.A., Schroers, I., and Johnson, W.L.: Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys. Appl. Phys. Lett. 78, 1213 (2001).CrossRefGoogle Scholar
24Glade, S.C., Busch, R., Lee, D.S., Johnson, W.L., Wunderlich, R.K., and Fecht, H.J.: Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9 Ni14.6Al10Ti5 and Zr57 Cu15.4 Ni12.6 Al10Nb5 bulk metallic glass forming alloys. J. Appl. Phys. 87, 7242 (2000).CrossRefGoogle Scholar
25Guo, S.F., Poon, J., and Shiflet, G.J.: Metallic glass ingots based on yttrium. Appl. Phys. Lett. 83, 2575 (2003).CrossRefGoogle Scholar