Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T20:31:34.246Z Has data issue: false hasContentIssue false

Fatigue of ferroelectric PbZrxTiyO3 capacitors with Ru and RuOx electrodes

Published online by Cambridge University Press:  18 February 2016

S. D. Bernstein
Affiliation:
Research Division, Raytheon Company, Lexington, Massachusetts 02173
T. Y. Wong
Affiliation:
Research Division, Raytheon Company, Lexington, Massachusetts 02173
Yanina Kisler
Affiliation:
Research Division, Raytheon Company, Lexington, Massachusetts 02173
R. W. Tustison
Affiliation:
Research Division, Raytheon Company, Lexington, Massachusetts 02173
Get access

Extract

The fatigue behavior of ferroelectric PZT capacitors with Ru and RuOx electrodes was studied. These capacitors show no sign of fatigue out to 1 X 1011 cycles, in sharp contrast to the degradation typically observed with Pt electrodes. Compared to Pt electrodes, the initial polarization was lower, but after fatiguing the polarization was comparable to or larger than that for Pt electrodes. Differences in polarization in response to switching and nonswitching pulses greater than 10 μC/cm2 were observed at 1 X 1011 cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J.F. and Paz de Araujo, C. A., Science 246, 1400 (1989).Google Scholar
2. The Oxide Handbook, edited by Samsonov, G. V., translated by Turton, C. N. and Turton, T. I. (Plenum Press, New York, 1973), p. 274.Google Scholar
3. Tomkiewicz, M., Huang, Y. S., and Pollak, F. H., J. Electrochem. Soc. 130, 1514 (1983).Google Scholar
4. Sze, S. M., Physics of Semiconductor Devices (John Wiley and Sons, New York, 1981), p. 251.Google Scholar
5. Dixit, A. V., Rajopadhye, N. R., and Bhoraskar, S. V., J. Mater. Sci. 21, 2798 (1986).CrossRefGoogle Scholar
6. Bernstein, S.D., Kisler, Yanina, Wahl, J.M., Bernacki, S.E., and Collins, S.R., in Ferroelectric Thin Films II, edited by Kingon, A.I., Myers, E. R., and Turtle, B.A. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 373.Google Scholar
7. Miller, S. L., Nasby, R. D., Schwank, J. R., Rodgers, M. S., and Dressendorfer, P. V., J. Appl. Phys. 68, 6463 (1990).Google Scholar
8. Standardized Ferroelectric Tester, Radiant Technologies Inc., 1009 Bradbury S.E., Albuquerque, NM 87106.Google Scholar
9. Johnson, D. J., Amm, D. T., Griswold, E., Sreenivas, K., Yi, G., and Sayer, M., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 289.Google Scholar
10. Scott, J.F., Araujo, C.A., Melnick, B.M., McMillan, L.D., and Zuleeg, R., J. Appl. Phys. 70, 382 (1991).Google Scholar
11. Duiker, H.M., Beale, P.D., Scott, J.F., Paz de Araujo, C. A., Melnick, B.M., Cuchiaro, J. D., and McMillan, L. D., J. Appl. Phys. 68, 5783 (1990).Google Scholar
12. Moazzami, R., Hu, C., and Shepherd, W.H., IEEE Proceedings IEDM, 417 (1990).Google Scholar