Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T13:05:09.689Z Has data issue: false hasContentIssue false

Face-centered-cubic to Hexagonal-close-packed Transformation in Nanocrystalline Ni(Si) by Mechanical Alloying

Published online by Cambridge University Press:  31 January 2011

M. K. Datta
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur-721 302, India
S. K. Pabi
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur-721 302, India
B. S. Murty
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur-721 302, India
Get access

Abstract

An allotropic transition from face-centered-cubic (fcc) to hexagonal-close-packed (hcp) Ni(Si) solid solution in Ni95Si5 and Ni90Si10 during nanocrystallization by mechanical alloying is reported. The transformation was identified as a defect-induced melting accompanied by a volume expansion of 8.6% and was observed when fcc Ni(Si) reached a critical crystallite size of 10 nm. Calculation based on equation of state showed that a 37% reduction in tetragonal shear modulus and a negative pressure of about 8.7 GPa were generated at the onset of transformation.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Koch, C.C., Cavin, O.B., MacKamey, C.G., and Scarbourgh, J.O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
2.Johnson, W.L., Li, M., and Krill, C.E. III, J. Non-Cryst. Solids 156–158, 481 (1993).CrossRefGoogle Scholar
3.Voronel, A., Rabinovich, S., Kisliuk, A., Steinberg, V., and Sverbilova, T., Phys. Rev. Lett. 60, 2402 (1988).CrossRefGoogle Scholar
4.Tallon, J.L., Nature (London) 342, 658 (1989).CrossRefGoogle Scholar
5.Koike, J., Phys. Rev. B 47, 7700 (1993).CrossRefGoogle Scholar
6.Fecht, H.J., Nanostruct. Mater. 6, 33 (1995).CrossRefGoogle Scholar
7.Grayznov, V.G. and Trusov, L.I., Prog. Mater. Sci. 37, 289 (1993).CrossRefGoogle Scholar
8.Was, G., Prog. Surf. Sci. 32, 211 (1989).CrossRefGoogle Scholar
9.Zhang, Z.J., Bai, H.Y., Qiu, Q.L., Yang, T., Tao, K., and Liu, B.X., J. Appl. Phys. 73, 1702 (1993).CrossRefGoogle Scholar
10.Blaaderen, V., Ruel, R., and Wiltzius, P., Nature (London) 385, 321 (1997).CrossRefGoogle Scholar
11.de Keijeer, Th. H., Langford, J.I., Mittemeijer, E.I., and Vogels, A.B.P, J. Appl. Crystallogr. 15, 308 (1982).CrossRefGoogle Scholar
12.Culity, B.D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, New York, 1978), p. 411.Google Scholar
13.Pearson, W.B., A Handbook of Lattice Spacing and Structures of Metals and Alloys (Pergamon, London, 1958), p. 786.Google Scholar
14.Murty, B.S., Das, D., Manna, I., and Pabi, S.K. (unpublished).Google Scholar
15.Liu, X.D., Zhang, H.Y., Lu, K., and Hu, Z.Q., J. Phys. Condens. Matter 6, L497 (1994).CrossRefGoogle Scholar
16.Onodera, S., J. Phys. Soc. Jpn. 61, 2190 (1992).CrossRefGoogle Scholar
17.Tallon, J.L., J. Phys. Chem. Solids. 41, 837 (1980).CrossRefGoogle Scholar
18.McMillan, P.F., Nature (London) 391, 539 (1998).CrossRefGoogle Scholar
19.Richet, P., Nature (London) 331, 56 (1988).CrossRefGoogle Scholar
20.Fecht, H.J., Phys. Rev. Lett. 65, 610 (1990).CrossRefGoogle Scholar