Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T11:56:24.685Z Has data issue: false hasContentIssue false

Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability under air atmosphere

Published online by Cambridge University Press:  31 January 2011

H. Men
Affiliation:
Department of Metallurgical Engineering, Center for Non-crystalline Materials, Yonsei University, 134 Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea
D. H. Kim*
Affiliation:
Department of Metallurgical Engineering, Center for Non-crystalline Materials, Yonsei University, 134 Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A new Mg65Cu25Gd10 alloy having significantly improved glass-forming ability (GFA) has been developed. In this article, we show that the ternary Mg65Cu25Gd10 bulk metallic glass with diameter of at least 8 mm can successfully be fabricated by a conventional Cu-mold casting method in air atmosphere. The critical cooling rate for glass formation was estimated on the order of magnitude of approximately 1 K/s. When compared with the GFA of Mg65Cu25Y10 alloy, the significantly improved GFA of Mg65Cu25Gd10 alloy cannot be explained by ΔTx and Trg values.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Zhang, T., and Matsumoto, T., Mater. Trans., JIM 31, 177 (1990).CrossRefGoogle Scholar
2.Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
3.Kim, S.G., Inoue, A., and Masumoto, T., Mater. Trans., JIM 31, 929 (1990).Google Scholar
4.Inoue, A., Kato, A., Zhang, T., Kim, S.G., and Masumoto, T., Mater. Trans., JIM 32, 609 (1991).CrossRefGoogle Scholar
5.Inoue, A., Nakamura, T., Nishiyama, N., and Masumoto, T., Mater. Trans., JIM 33, 937 (1992).Google Scholar
6.Kang, H.G., Park, E.S., Kim, W.T., Kim, D.H., and Cho, H.K., Mater. Trans., JIM 41, 846 (2000).Google Scholar
7.Park, E.S., Kang, H.G., Kim, W.T., and Kim, D.H., J. Non-Cryst. Solids 279, 154 (2001).Google Scholar
8.Amiya, K. and Inoue, A., Mater. Trans., JIM 41, 1460 (2000).CrossRefGoogle Scholar
9.Amiya, K. and Inoue, A., Mater. Trans. 42, 543 (2001).CrossRefGoogle Scholar
10.Men, H., Hu, Z.Q., and Xu, J., Scr. Mater. 46, 699 (2002).Google Scholar
11.Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Acta Mater. 49, 2645 (2001).CrossRefGoogle Scholar
12.Inoue, A. and Zhang, W., Mater. Trans. 43, 2921 (2002).Google Scholar
13.Choi-Yim, H., Xu, D.H., and Johnson, W.L., Appl. Phys. Lett. 82, 1030 (2003).Google Scholar
14.Zhang, W. and Inoue, A., Mater. Trans. 43, 2342 (2002).Google Scholar
15.Lee, M.H., Bae, D.H., Kim, W.T., and Kim, D.H., Mater. Trans., JIM (submitted).Google Scholar
16.Busch, R., Liu, W., and Johnson, W.L., J. Appl. Phys. 83, 4143 (1998).Google Scholar
17.Barandiaran, J.M. and Colmenero, J., J. Non-Cryst. Solids 46, 277 (1981).Google Scholar
18.Turnbull, D., Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
19.Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
20.Nishiyama, N. and Inoue, A., Mater. Trans., JIM 37, 1531 (1996).Google Scholar
21.Lin, X.H. and Johnson, W.L., J. Appl. Phys. 78, 6514 (1995).Google Scholar
22.Greer, A.L., Nature 366, 303 (1993).Google Scholar
23.Desre, P.J., Cini, E., and Vinet, B., J. Non-Cryst. Solids 288, 210 (2001).CrossRefGoogle Scholar
24.Louzguine, D.V. and Inoue, A., J. Mater. Res. 17, 2112 (2002).Google Scholar