Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T12:54:12.975Z Has data issue: false hasContentIssue false

Fabrication of metal oxide–diamond composite films by electrophoretic deposition and anodic dissolution

Published online by Cambridge University Press:  31 January 2011

Kai Kamada
Affiliation:
Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
Keita Maehara
Affiliation:
Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
Maki Mukai
Affiliation:
Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
Shintaro Ida
Affiliation:
Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
Yasumichi Matsumoto
Affiliation:
Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
Get access

Abstract

Electrochemical codeposition of diamond particles and refractory metal hydroxide films was conducted by combining electrophoretic deposition and anodic dissolution. Anodic corrosion of metal proceeded under the influence of iodide ions, and then metal ions were released to the solvent. Positively charged diamond particles were suspended in the solvent and electrophoretically deposited on the cathode surface at the same time as electrochemical deposition of the metal ions. As a result, diamond dispersed metal hydroxide film was produced. The diamond content of the film was easily controlled by varying the quantity of suspension in the solvent. This codeposition mechanism is investigated in detail.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sarkar, P. and Nicholson, P.S., J. Am. Ceram. Soc. 79, 1987 (1996).CrossRefGoogle Scholar
2.Sarkar, P., Haung, X., and Nicholson, P.S., J. Am. Ceram. Soc. 75, 2907 (1992).Google Scholar
3.Sarkar, P., Haung, X., and Nicholson, P.S., Am. Ceram. Soc. Bull. 75, 48 (1996).Google Scholar
4.Sugimoto, W., Terabayashi, O., Murakami, Y., and Takasu, Y., J. Mater. Chem. 12, 3814 (2002).Google Scholar
5.Matsumoto, Y., Funatsu, A., Matsuo, D., Unal, U., and Ozawa, K., J. Phys. Chem. B 105, 10893 (2001).CrossRefGoogle Scholar
6.Negishi, H., Sakai, N., Yamaji, K., Horita, T., and Yokokawa, H., J. Electrochem. Soc. 147, 1682 (2000).CrossRefGoogle Scholar
7.Uchikoshi, T., Ozawa, K., Hatton, B.D., and Sakka, Y., Trans. Mater. Res. Soc. Jpn. 25, 107 (2000).Google Scholar
8.Uchikoshi, T., Ozawa, K., Hatton, B.D., and Sakka, Y., J. Mater. Res. 16, 321 (2001).CrossRefGoogle Scholar
9.Davies, D.A., Lipman, A.L., Silver, J., and Tseung, A.C.C., Electro-chem. Solid-State Lett. 4, H12 (2001).Google Scholar
10.Gibbons, C., Jing, X., Silver, J., Vecht, A., and Withnall, R., Electro-chem. Solid-State Lett. 2, 357 (1999).Google Scholar
11.Kamada, K., Mukai, M., and Matsumoto, Y., Mater. Lett. 57, 2348 (2003).Google Scholar
12.Furukawa, N., J. Surf. Finish. Soc. Jpn. 51, 1056 (2000).Google Scholar
13.Hayashi, H., J. Surf. Finish. Soc. Jpn. 51, 1062 (2000).Google Scholar
14.Yamada, N., Shoji, H., Kubo, Y., and Katayama, S., J. Mater. Sci. 37, 2071 (2002).Google Scholar
15.Hamagami, J., Nakajima, T., Kanamura, K., and Umegaki, T., Key Eng. Mater. 16, 53 (2002).Google Scholar
16.Ando, T., Yamamoto, K., Ishii, M., Kamo, M., and Sato, Y., J. Chem. Soc. Faraday Trans. 89, 3635 (1993).Google Scholar
17.Ida, S., Tsubota, T., Hirabayashi, O., Nagata, M., Matsumoto, Y., and Fujishima, A., Diamond Relat. Mater. 12, 601 (2003).Google Scholar
18.Tsubota, T., Tanii, S., Ida, S., Nagata, M., and Matsumoto, Y., Phys. Chem. Chem. Phys. 5, 1474 (2003).Google Scholar
19.Ando, T., Ishii, M., Kamo, M., and Sato, Y., J. Chem. Soc. Farday Trans. 89, 1783 (1993).CrossRefGoogle Scholar
20.Takayama, Y., Negishi, H., Nakamura, S., Koura, N., Idemoto, Y., and Yamaguchi, F., J. Ceram. Soc. Jpn. 107, 119 (1999).CrossRefGoogle Scholar
21.Ishihara, T., Sato, K., Mizuhara, Y., and Takita, Y., Chem. Lett. 943 (1992).CrossRefGoogle Scholar
22.Lee, D. and Singh, R.K., Appl. Phys. Lett. 70, 1542 (1997).Google Scholar
23.Zhitomirsky, I., Mater. Lett. 37, 72 (1998).Google Scholar
24.Kamada, K., Mukai, M., and Matsumoto, Y., Electrochim. Acta 47, 3309 (2002).Google Scholar
25.Zhitomirsky, I., Mater. Lett. 33, 305 (1998).Google Scholar
26.Reetz, M.T., Quaiser, S.A., and Merk, C., Chem. Ber. 129, 741 (1996).Google Scholar
27.Zotti, G., Schiavon, G., and Zecchin, S., J. Electrochem. Soc. 146, 637 (1999).CrossRefGoogle Scholar
28.Shimbo, M., Tanzawa, K., Miyakawa, M., and Emoto, T., J. Electro-chem. Soc. 132, 393 (1985).Google Scholar