Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T19:36:46.228Z Has data issue: false hasContentIssue false

Fabrication of high-strength transparent MgAl2O4 spinel polycrystals by optimizing spark-plasma-sintering conditions

Published online by Cambridge University Press:  31 January 2011

Koji Morita*
Affiliation:
National Institute for Materials Science, Nano-Ceramics Center, Tsukuba, Ibaraki 305-0047, Japan
Hidehiro Yoshida
Affiliation:
National Institute for Materials Science, Nano-Ceramics Center, Tsukuba, Ibaraki 305-0047, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

By optimizing the heating rate during spark-plasma-sintering (SPS) processing, a high-strength transparent spinel (MgAl2O4) can be successfully fabricated for only a 20-min soak at 1300 °C. For the heating rates of ≤10 °C/min, the spinel exhibits an excellent combination of in-line transmission (50–70%), four-point-bending strength (>400 MPa), and hardness (>15 GPa). The excellent optical and mechanical properties can be ascribed to the superimposed effects of the sub-micrograin size, fine-pore size, and low porosity, which are related closely to the heating rate during the SPS processing. The present study demonstrates that to attain a high-strength transparent spinel at low temperatures and short sintering times, the low-heating-rate SPS processing is more efficient compared with the high-heating-rate SPS processing.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Munir, Z.A., Anselmi-Tamburini, U. and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006)CrossRefGoogle Scholar
2Chaim, R., Shen, J.Z. and Nygren, M.: Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering. J. Mater. Res. 19, 2527 (2004)CrossRefGoogle Scholar
3Anselmi-Tamburini, U., Woolman, J.N. and Munir, Z.: Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv. Funct. Mater. 17, 3267 (2007)CrossRefGoogle Scholar
4Jiang, D.T., Hulbert, D.M., Anselmi-Tamburini, U., Ng, T., Land, D. and Mukherjee, A.K.: Optically transparent polycrystalline Al2O3 produced by spark plasma sintering. J. Am. Ceram. Soc. 91, 151 (2008)Google Scholar
5Kim, B.N., Hiraga, K., Morita, K. and Yoshida, H.: Spark plasma sintering of transparent alumina. Scr. Mater. 57, 607 (2007)CrossRefGoogle Scholar
6Kim, B.N., Hiraga, K., Morita, K. and Yoshida, H.: Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina. J. Eur. Ceram. Soc. 29, 323 (2009)CrossRefGoogle Scholar
7Kim, B.N., Hiraga, K., Morita, K., Yoshida, H., Miyazaki, T. and Kagawa, Y.: Microstructure and optical properties of transparent alumina. Acta Mater. 57, 1319 (2009)CrossRefGoogle Scholar
8Morita, K., Kim, B.N., Hiraga, K. and Yoshida, H.: Fabrication of transparent MgAl2O4spinel polycrystal by spark-plasma-sintering processing. Scr. Mater. 58, 1114 (2008)CrossRefGoogle Scholar
9Morita, K., Kim, B.N., Hiraga, K. and Yoshida, H.: Spark-plasma-sintering (SPS) condition optimization for producing transparent MgAl2O4 spinel polycrystal. J. Am. Ceram. Soc. 92, 1208 (2009)CrossRefGoogle Scholar
10Reimanis, I.E., Kleebe, H.J., Cook, R.L. and DiGiovanni, A.: Transparent spinel fabricated from novel powders: Synthesis, microstructure and optical properties, in Proceedings of International Society for Optical Engineering (SPIE) Defense and Security Symposium (Orlando, FL, 2004), p. 30.Google Scholar
11Cook, R., Kochis, M., Reimanis, I. and Kleebe, H.J.: A new powder production route for transparent spinel windows: Powder synthesis and window properties, in Proceedings of the SPIE, Window and Dome Technologies and Materials IX, Vol. 5786, edited by Tustison, R.W. (Orlando, FL, 2005), p. 41.CrossRefGoogle Scholar
12Villalobos, G.R., Sanghera, J.S. and Aggarwal, I.D.: Degradation of magnesium aluminum spinel by lithium fluoride sintering aid. J. Am. Ceram. Soc. 88, 1321 (2005)Google Scholar
13Bratton, R.J.: Translucent sintered MgAl2O4. J. Am. Ceram. Soc. 57, 283 (1974)CrossRefGoogle Scholar
14Hamano, K. and Kanzaki, S.: Fabrication of transparent spinel ceramics by reactive hot-pressing. J. Ceram. Soc. Jpn. 85, 225 (1977)Google Scholar
15Shimada, M., Endo, T., Saito, T. and Sato, T.: Fabrication of transparent spinel polycrystalline materials. Mater. Lett. 28, 413 (1996)CrossRefGoogle Scholar
16Tsukuma, K.: Transparent MgAl2O4 spinel ceramics produced by HIP post-sintering. J. Ceram. Soc. Jpn. 114, 802 (2006)CrossRefGoogle Scholar
17Frage, N., Cohen, S., Meir, S., Kalabukhov, S. and Darie, M.P.: Spark plasma sintering (SPS) of transparent magnesium-alumi-nate spinel. J. Mater. Sci. 42, 3273 (2007)Google Scholar
18Krell, A., Klimke, J. and Hutzler, T.: Advanced spinel and sub-mm Al2O3 for transparent armour applications. J. Eur. Ceram. Soc. 29, 275 (2009)Google Scholar
19Apetz, R. and van Bruggen, M.P.B.: Transparent alumina: A light-scattering model. J. Am. Ceram. Soc. 86, 480 (2003)Google Scholar
20Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981)CrossRefGoogle Scholar
21Mitchell, T.E.: Dislocations and mechanical properties of MgOAl2O3 spinel single crystals. J. Am. Ceram. Soc. 82, 3305 (1999)CrossRefGoogle Scholar
22Dericioglu, A.F. and Kagawa, Y.: Effect of grain boundary micro-cracking on the light transmittance of sintered transparent MgAl2O4. J. Eur. Ceram. Soc. 23, 951 (2003)CrossRefGoogle Scholar
23Krell, A., Klimke, J. and Hutzler, T.: Transparent compact ceramics: Inherent physical issues. Opt. Mater. 31, 1144 (2009)CrossRefGoogle Scholar
24Roy, D.W., Hastert, J.L., Coubrough, L.E., Green, K.E. and Trujillo, A.: Method for producing transparent polycrystalline body with high ultraviolet transmittance. U.S. Patent No. 5244849 (1993).Google Scholar
25Patel, P.J., Gilde, G.A., Dehmer, P.G. and McCauley, J.W.: Transparent armor. AMPTIAC Newsletter 4, 1 (2000)Google Scholar
26Rice, R.W.: Grain size and porosity dependence of ceramic fracture energy and toughness at 22 C. J. Meat Sci. 31, 1969 (1996)CrossRefGoogle Scholar
27Krell, A. and Blank, P.: Grain size dependence of hardness in dense submicrometer alumina. J. Am. Ceram. Soc. 78, 1118 (1995)CrossRefGoogle Scholar
28Peelen, J.G.J. and Metselaar, R.: Light scattering by pores in poly-crystalline materials: Transmission properties of alumina. J. Appl. Phys. 45, 216 (1974)CrossRefGoogle Scholar
29Meir, S., Kalabukhov, S., Froumin, N., Dariel, M.P. and Frage, N.: Synthesis and densification of transparent magnesium aluminate spinel by sps processing. J. Am. Ceram. Soc. 92, 358 (2009)CrossRefGoogle Scholar
30Bernard-Granger, G., Benameur, N., Guizard, C. and Nygren, M.: Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scr. Mater. 60, 164 (2009)Google Scholar
31Kanzaki, S., Saito, K., Nakagawa, Z. and Hamano, K.: Variation of transparency and microstructure on annealing of hot-pressed MgAl spinel ceramics. Yogyo-kyoukai-shi 86, 485 (1978)Google Scholar
32Kim, B.N., Hiraga, K., Morita, K. and Yoshida, H.: Unpublished data.Google Scholar
33Anselmi-Tamburini, U., Woolman, J.N. and Munir, Z.A.: Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv. Funct. Mater. 17, 3267 (2007)Google Scholar
34Bennison, S.J. and Harmer, M.P.: Swelling of hot-pressed Al2O3. J. Am. Ceram. Soc. 68, 591 (1985)CrossRefGoogle Scholar
35Savoini, B., Ballesteros, C., Muñoz Santiuste, J.E., González, R. and Chen, Y.: Thermochemical reduction of yttria-stabilized-zirconia crystals: Optical and electron microscopy. Phys. Rev. B 57, 13439 (1998)CrossRefGoogle Scholar
36Petrovic, J.J. and Mendiratta, M.G.: Fracture from controlled surface flaw, in Proceedings of the Eleventh National Symposium on Fracture Mechanics: Part II, Fracture Mechanics Applied to Brittle Materials, edited by Freiman, S.W. (1979), p. 83.Google Scholar
37Petrovic, J.J., Jacobson, L.A., Talty, P.K. and Vasudevan, K.A.: Controlled surface flaws in hot-pressed Si3N4. J. Am. Ceram. Soc. 58, 113 (1975)CrossRefGoogle Scholar
38Krell, A.: Fracture origin and strength in advanced pressurelesssintered alumina. J. Am. Ceram. Soc. 81, 1900 (1998)Google Scholar
39Krell, A., Blank, P., Ma, H. and Hutzler, T.: Transparent sintered corundum with high hardness and strength. J. Am. Ceram. Soc. 86, 12 (2003)CrossRefGoogle Scholar
40Chakravarty, D., Bysakh, S., Muraleedharan, K., Rao, T.N. and Sundaresan, R.: Spark plazma sintering of magnesia-doped alumina with high hardness and fracture toughness. J. Am. Ceram. Soc. 91, 203 (2008)CrossRefGoogle Scholar
41Rice, R.W., Wu, C.C. and Boichelt, F.: Hardness–grain-size relations in ceramics. J. Am. Ceram. Soc. 77, 2539 (1994)Google Scholar
42Ehre, D. and Chaim, R.: Abnormal Hall-Petch behavior in nanocrystalline MgO ceramic. J. Math. Sci. 43, 6139 (2008)CrossRefGoogle Scholar