Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T12:29:31.091Z Has data issue: false hasContentIssue false

Fabrication of high-critical current density Yba2Cu3O7−δ films using a fluorine-free sol gel approach

Published online by Cambridge University Press:  31 January 2011

Y. Xu
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, and Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221
A. Goyal*
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
N. A. Rutter
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. Shi
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221
M. Paranthaman
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
S. Sathyamurthy
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
P. M. Martin
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. M. Kroeger
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a)Address all correspondence to this author at Bethel Valley Road, P.O. Box 2008 Oak Ridge, TN 37831-6116. e-mail: [email protected]
Get access

Abstract

Superconducting Yba2Cu3O7−δ (YBCO) films with critical transition temperature Tc(0) of 90 K were fabricated via a fluorine-free, metal trimethylacetate based sol-gel route. Precursor films were spin-coated onto single-crystal (001) LaAlO3 (LAO) and (001) SrTiO3 (STO) substrates. Optimization of the burnout process resulted in films with excellent out-of-plane and in-plane texture. Transport critical current densities, Jc, of 1.6 and 1.1 MA/cm2 were obtained at 77 K in self-field on films grown on LAO and STO substrates, respectively. This is the first demonstration of high-Jc YBCO film fabrication using a fluorine-free, ex-situ process.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gupta, A., Jagannathan, R., Cooper, E.I., Geiss, E.A., Landman, J.I., and Hussey, B.W., Appl. Phys. Lett. 52, 2077 (1988).Google Scholar
2.Mclntyre, P.C., Cima, M.J., Smith, J.A., Hallock, R.B., Siegal, M.P., and Phillips, J.M., J. Appl. Phys. 71, 1868 (1992).CrossRefGoogle Scholar
3.Malozemoff, A.P., Annavarapu, S., Fritzemeier, L., Li, Q., Prunier, V., Rupich, M., Thieme, C., Zhang, W., Goyal, A., Paranthaman, M., and Lee, D.F., Supercond. Sci. Technol. 13, 473 (2000).Google Scholar
4.Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klaburde, C.E., Hartfield, E., Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
5.Goyal, A., Budai, J.D., Kroeger, D.M., Norton, D.P., Christen, D.P., and Specht, E.D., U.S. Patent No. 5 739 086 (14 April 1998).Google Scholar
6.Goyal, A., Budai, J.D., Kroeger, D.M., Norton, D.P., Christen, D.P., and Specht, E.D., U.S. Patent No. 5 741 377 (21 April 1998).Google Scholar
7.Goyal, A., Budai, J.D., Kroeger, D.M., Norton, D.P., Christen, D.P., and Specht, E.D., U.S. Patent No. 5 898 020 (27 April 1999).Google Scholar
8.Parmigiani, F., Chiarello, G., and Ripamonti, N., Phys. Rev. B 36, 7148 (1987).CrossRefGoogle Scholar
9.Paranthaman, M., in Next Generation HTS Conductors, edited by Goyal, A. (Plenum Publishing, New York, 2002).Google Scholar
10.Lian, J., Xu, Y., Goyal, A., and Shi, D. (to be published).Google Scholar
11.Feenstra, R., Lindemer, T.B., Budai, J.D., and Galloway, M.D., J. Appl. Phys. 69, 6569 (1991).Google Scholar