Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:09:15.827Z Has data issue: false hasContentIssue false

Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution

Published online by Cambridge University Press:  31 January 2011

Takahiro Nakamura*
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Yuzuru Mochidzuki
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Shunichi Sato
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Gold particles were fabricated by the high-intensity femtosecond laser irradiation of gold (III) chloride trihydrate (HAuCl4) aqueous solution. The structure and size distribution of the prepared particles were evaluated by transmission electron microscopy. The configuration of the gold particles varied with the concentration of the HAuCl4 aqueous solution. The mean particle size and size distribution were changed by the addition of polyvinylpyrrolidone (PVP), which acted as a dispersant, and monodispersed gold nanoparticles with a diameter of about 3 nm were successfully fabricated. The formation process of the nanoparticles is discussed in terms of the optical decomposition of molecules in the highly intense optical field generated by femtosecond laser irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cornaggia, C., Normand, D.Morellec, J.: Role of the molecular electronic configuration in the Coulomb fragmentation of N2, C2H2 and C2H4 in an intense laser field. J. Phys. B 25, L415 1992CrossRefGoogle Scholar
2Cornaggia, C., Schmidt, M.Normand, D.: Laser-induced nuclear motions in the Coulomb explosion of C2H2+ ions. Phys. Rev. A 51, 1431 1995CrossRefGoogle ScholarPubMed
3Cornaggia, C.: Carbon geometry of C3H3+ and C3H4+ molecular ions probed by laser-induced Coulomb explosion. Phys. Rev. A 52, R4328 1995CrossRefGoogle ScholarPubMed
4Talebpour, A., Bandrauk, A.D., Vijayalakshmi, K.Chin, S.L.: Dissociative ionization of benzene in intense ultra-fast laser pulses. J. Phys. B At., Mol. Opt. Phys. 33, 4615 2000CrossRefGoogle Scholar
5Zyubina, T.S., Kim, G-S., Lin, S.H., Mebel, A.M.Bandrauk, A.D.: Dissociation pathways of benzene trication. Chem. Phys. Lett. 359, 253 2002CrossRefGoogle Scholar
6Zyubina, T.S., Lin, S.H., Bandrauk, A.D.Mebel, A.M.: Dissociation pathways of cyclohexane trication. Chem. Phys. Lett. 393, 470 2004CrossRefGoogle Scholar
7Hasegawa, H., Takahashi, E.J., Nabekawa, Y., Ishikawa, K.L.Midorikawa, K.: Multiphoton ionization of He by using intense high-order harmonics in the soft-x-ray region. Phys. Rev. A 71, 023407 2005CrossRefGoogle Scholar
8Okino, T., Yamanouchi, K., Shimizu, T., Furusawa, K., Hasegawa, H., Nabekawa, Y.Midorikawa, K.: Attosecond molecular Coulomb explosion. Chem. Phys. Lett. 432, 68 2006CrossRefGoogle Scholar
9Shimizu, S., Kou, J., Kawato, S., Shimizu, K., Sakabe, S.Nakashima, N.: Coulomb explosion of benzene irradiated by an intense femtosecond laser pulse. Chem. Phys. Lett. 317, 609 2000CrossRefGoogle Scholar
10Shimizu, S., Zhakhovskii, V., Sato, F., Okihara, S., Sakabe, S., Nishihara, K., Izawa, Y., Yatsuhashi, T.Nakashima, N.: Coulomb explosion of benzene induced by an intense laser field. J. Chem. Phys. 117, 3180 2002CrossRefGoogle Scholar
11Hankin, S.M., Villeneuve, D.M., Corkum, P.B.Rayner, D.M.: Intense-field laser ionization rates in atoms and molecules. Phys. Rev. A 64, 013405 2001CrossRefGoogle Scholar
12Hatanaka, K., Miura, T.Fukumura, H.: Ultrafast x-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride. Appl. Phys. Lett. 80, 3925 2002CrossRefGoogle Scholar
13Hatanaka, K., Miura, T.Fukumura, H.: White x-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: A spectroscopic study on electron temperatures as functions of laser intensity, solute concentration, and solute atomic number. Chem. Phys. 299, 265 2004CrossRefGoogle Scholar
14Schroeder, H.Chin, S.L.: Visualization of the evolution of multiple filaments in methanol. Opt. Commun. 234, 399 2004CrossRefGoogle Scholar
15Liu, J., Schroeder, H., Chin, S.L., Li, R., Yu, W.Xu, Z.: Space-frequency coupling, conical waves, and small-scale filamentation in water. Phys. Rev. A 72, 053817 2005CrossRefGoogle Scholar
16Dharmadhikari, A.K., Rajgara, F.A.Mathur, D.: Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride. Appl. Phys. B 82, 575 2006CrossRefGoogle Scholar
17Chin, S.L.Lagacé, S.: Generation of H2, O2 and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization. Appl. Opt. 35, 907 1996CrossRefGoogle ScholarPubMed
18Mafuné, F., Hohno, J., Takeda, Y., Kondow, T.Sawabe, H.: Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 105, 5114 2001CrossRefGoogle Scholar
19Kabashin, A.V., Meunier, M., Kingston, C.Luong, J.H.T.: Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins. J. Phys. Chem. B 107, 4527 2003CrossRefGoogle Scholar
20Compagnini, G., Scalisi, A.A.Puglisi, O.: Production of gold nanoparticles by laser ablation in liquid alkanes. J. Appl. Phys. 94, 7874 2003CrossRefGoogle Scholar
21Kabashin, A.V.Meunier, M.: Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941 2003CrossRefGoogle Scholar
22Sylvestre, J.P., Poulin, S., Kabashin, A.V., Sacher, E., Meunier, M.Luong, J.H.T.: Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B 108, 16864 2004CrossRefGoogle Scholar
23Dolgaev, S.I., Simakin, A.V., Voronov, V.V., Shafeev, G.A.Bozon-Verduraz, F.: Nanoparticles produced by laser ablation of solid in liquid environment. Appl. Surf. Sci. 186, 546 2002CrossRefGoogle Scholar
24Mafuné, F., Hohno, J., Takeda, Y.Kondow, T.: Formation of stable platinum nanoparticles by laser ablation in water. J. Phys. Chem. B 107, 4218 2003CrossRefGoogle Scholar
25Liang, C., Shimizu, Y., Masuda, M., Sasaki, T.Koshizaki, N.: Preparation of layered zinc hydroxide/surfactant nanocomposite by pulsed-laser ablation in a liquid medium. Chem. Mater. 16, 963 2004CrossRefGoogle Scholar
26Usui, H., Shimizu, Y., Sasaki, T.Koshizaki, N.: Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J. Phys. Chem. B 109, 120 2005CrossRefGoogle ScholarPubMed
27Zeng, H., Cai, W., Li, Y., Hu, J.Liu, P.: Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J. Phys. Chem. B 109, 18260 2005CrossRefGoogle ScholarPubMed
28Usui, H., Sasaki, T.Koshizaki, N.: Ultraviolet emission from layered nanocomposites of Zn(OH)2 and sodium dodecyl sulfate prepared by laser ablation in liquid. Appl. Phys. Lett. 87, 063105 2005CrossRefGoogle Scholar