Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T11:02:07.670Z Has data issue: false hasContentIssue false

Fabrication of Device-grade Separation-by-implantation-of-oxygen Materials by Optimizing Dose-energy Match

Published online by Cambridge University Press:  31 January 2011

Meng Chen*
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China, and Shanghai Simgui Technology Co., Ltd., 200 Puhui Jiading, Shanghai 201821, People's Republic of China
Yuehui Yu
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China, and Shanghai Simgui Technology Co., Ltd., 200 Puhui Jiading, Shanghai 201821, People's Republic of China
Xi Wang
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China, and Shanghai Simgui Technology Co., Ltd., 200 Puhui Jiading, Shanghai 201821, People's Republic of China
Xiang Wang
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
Jing Chen
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
Xianghua Liu
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
Yeming Dong
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this article, we report formation of separation-by-implantation-of-oxygen (SIMOX) silicon-on-insulator (SOI) materials with doses ranging from (2.5 to 13.5) × 1017 cm−2 at acceleration energies of 70–160 keV and subsequent annealing at temperatures over 1300 °C in oxygen + argon atmosphere for 5 h. The microstructure evolution of SIMOX wafers was characterized by Rutherford backscattering spectroscopy, cross-sectional transmission electron microscopy, high-resolution transmission electron microscopy, Secco, and Cu-plating. This study revealed a series of good matches of dose-energy combination at acceleration energies of 70–160 keV with doses of (2.5–5.5) × 1017 cm−2, in which SIMOX wafers had good crystallinity of the top silicon, sharp Si/SiO2 interfaces, high-integrity buried oxide layers with low pinhole density, and low detectable silicon islands. Furthermore, the higher the oxygen dose, the higher the implanted energy required for the formation of a buried oxide free from Si islands. The mechanism of the optimum dose-energy match is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nakashima, S. and Izumi, K., J. Mater. Res. 8, 523 (1993).CrossRefGoogle Scholar
Afanasev, V.V., Stesmans, A., Revesz, A.G., and Hughes, H.L., J. Appl. Phys. 82, 2184 (1997).CrossRefGoogle Scholar
Namavar, F., Buchanan, B., Cortesi, E., and Sioshansi, P. (Mater. Res. Soc. Symp. Proc. 147, 235 (1992).CrossRefGoogle Scholar
www.3.2BM.com/chips/bluelog/showcase/soiGoogle Scholar
Yap, J.H., Nee, J., Simic, E., Yiu, E., Yoon, J., and Chung, J.E., in IEEE 1994 International SOI Conference Proceedings, Nantucket, MA, October 3–6, (1994), p. 93.Google Scholar
Matsumura, A., Kawamura, K.K., Mizutani, T., Takayama, S., Hamaguchi, I., and Nagatake, Y., in Electrochem. Soc. Proc., Pennington, NJ (1999), p. 79.Google Scholar
Auberton-Herve, A., Wittkower, A., and Aspar, B., Nucl. Instrum. Methods Phys. Res. B 96, 420 (1995).CrossRefGoogle Scholar
Robinson, A.K., Li, Y., Marsh, C.D., Chater, R.J., Hemment, P.L.F., Kilner, J.A., and Booker, G.R., Mater. Sci. Eng. B 12, 45 (1992).CrossRefGoogle Scholar
Jiao, J., Johnson, B., Seraphin, S., Anc, M.J., Dolan, R.P., and Cordts, B.F., Mater. Sci. Eng. B 72, 150 (2000).CrossRefGoogle Scholar
Chen, M., Chen, J., Zheng, W., Li, L., Mu, H.C., Lin, Z.X., Yu, Y.H., and Wang, X., J. Vac. Sci. Technol. B 19, 337 (2001).CrossRefGoogle Scholar
Nakashima, S., Katayama, T., Miyamura, Y., Matsuzaki, A., Taoka, M., Ebi, D., Imai, M., Izumi, K., and Owada, N., J. Electrochem. Soc. 143, 244 (1996).CrossRefGoogle Scholar
www.ibis.comGoogle Scholar
Li, Y., Kilner, J.A., Chater, R.J., Hemment, P.L.F., Nejim, A., Robinson, Reeson, K.J., Marsh, C.D., and Booker, G.R., Electrochem. Soc. 140, 1780 (1993).CrossRefGoogle Scholar
Anc, M.J., Blake, J.G., and Nakai, T., in Electrochem. Soc. Proc., Pennington, NJ P51 (1999).Google Scholar
Celler, G.K., Hemment, P.L.F., West, K.W., and Gibson, J.M., Appl. Phys. Lett. 48, 532 (1986).CrossRefGoogle Scholar
Bagchi, S., Krause, S.J., and Roitman, P., Appl. Phys. Lett. 71, 2136 (1997).CrossRefGoogle Scholar
Ogura, A. and Ono, H., Appl. Surf. Sci. 159, 104 (2000).CrossRefGoogle Scholar