Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T07:14:04.306Z Has data issue: false hasContentIssue false

Fabrication of dense nanocrystalline ZrO2−3 wt. % Y2O3 by hot-isostatic pressing

Published online by Cambridge University Press:  31 January 2011

R. Chaim
Affiliation:
Department of Materials Engineering, Technion–Israel Institute of Technology, Haifa, 32000 Israel
M. Hefetz
Affiliation:
Armament Development Authority, P.O. Box 2250, Haifa 31021 Israel
Get access

Extract

Amorphous to nanocrystalline ZrO2−3 wt. % Y2O3 powders were formed by chemical precipitation from mixed nitrate salt solutions. The powders were cold pressed and presintered in air for 2 to 6 h within the temperature range of 1100 °C and 1300 °C. Hot isostatic pressing was performed for 2 to 3 h within the temperature range of 1150 °C to 1350 °C in argon pressure of 150 MPa. Fully dense pellets with grain size of 22 nm to 45 nm were formed by application of low presintering temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cook, A. C. F., Acta Metall. Mater. 42, 2191 (1994).Google Scholar
2.Kellett, B. J. and Lange, F. F., J. Am. Ceram. Soc. 72, 725 (1989).Google Scholar
3.Lange, F. F. and Kellett, B. J., J. Am. Ceram. Soc. 72, 735 (1989).Google Scholar
4.Lange, F. F., J. Am. Ceram. Soc. 67, 83 (1984).CrossRefGoogle Scholar
5.Mayo, M. J. and Hague, D. C., NanoStructured Mater. 3, 43 (1993).CrossRefGoogle Scholar
6.Tsukuma, K. and Shimada, M., Am. Ceram. Soc. Bull. 64, 310 (1985).Google Scholar
7.Gross, V. and Swain, M. V., J. Aust. Ceram. Soc. 22, 1 (1986).Google Scholar
8.Kim, J-Y., Uchida, N., Saito, K., and Uematsu, K., J. Am. Ceram. Soc. 73, 1069 (1990).CrossRefGoogle Scholar
9.Kim, J-Y., Okamoto, S., Uchida, N., and Uematsu, K., J. Mater. Sci. 25, 4634 (1990).CrossRefGoogle Scholar
10.Pebler, A. R., J. Mater. Res. 5, 680 (1990).Google Scholar
11.Qiu, H., Gao, L., Feng, C., Guo, J., and Yan, D., J. Mater. Sci. 30, 5508 (1995).CrossRefGoogle Scholar
12.Jiang, S., Stangle, G. C., Amarakoon, V. R. W., and Schulze, W. A., J. Mater. Res. 11, 2318 (1996).Google Scholar
13.Shi, J. L., Lin, Z. X., Qian, W. J., and Yen, T. S., J. Europ. Ceram. Soc. 13, 265 (1994).CrossRefGoogle Scholar
14.Feng, C., Qiu, H., Guo, J., Yan, D., and Schulze, W. A., J. Mater. Synthesis Process. 3, 25 (1995).Google Scholar
15.Hague, D. C. and Mayo, M. J., Mater. Sci. Eng. A204, 83 (1995).Google Scholar
16.Duran, P., Villegas, M., Capel, F., Recio, P., and Moure, C., J. Europ. Ceram. Soc. 16, 945 (1996).CrossRefGoogle Scholar
17.Nieh, T. G. and Wadsworth, J., Acta Metall. Mater. 38, 1121 (1990).Google Scholar
18.Nauer, M. and Carry, C., Scripta Metall. Mater. 24, 1459 (1990).CrossRefGoogle Scholar
19.Akmoulin, I. A., Djahazi, M., and Jonas, J. J., Scripta Metall. Mater. 25, 1035 (1991).CrossRefGoogle Scholar
20.Bravo-Leon, A., Jimenez-Melendo, M., and Dominguez-Rodriguez, A., Scripta Mater. 34, 1155 (1996).CrossRefGoogle Scholar
21.Miller, R. A., Smialek, J. L., and Garlick, R. G., in Advances in Ceramics, edited by Heuer, A. H. and Hobbs, L. W. (ACS Pub., Westerville, OH, 1981), Vol. 3, p. 241.Google Scholar
22.Kats-Demyanets, A. and Chaim, R., NanoStructured Mater. 6, 851 (1995).CrossRefGoogle Scholar
23.Xiang, J. X., Shen, H. D., and Luqian, W., J. Mater. Sci. 29, 121 (1994).Google Scholar
24.Wu, J-M. and Wu, C-H., J. Mater. Sci. 23, 3290 (1988).CrossRefGoogle Scholar
25.Shi, J. S. and Yen, T. S., J. Eur. Ceram. Soc. 14, 505 (1994).CrossRefGoogle Scholar
26.Rajendran, S., Mater. Forum 17, 333 (1993).Google Scholar
27.van de Graaf, M. A. C. G., Ter Maat, J. H. H., and Burggraaf, A. J., J. Mater. Sci. 20, 1407 (1985).Google Scholar
28.Skandan, G., Hahn, H., Roddy, M., and Cannon, W. R., J. Am. Ceram. Soc. 77, 1706 (1994).Google Scholar
29.Chen, D. J. and Mayo, M. J., NanoStructured Mater. 2, 469 (1993).Google Scholar
30.Frost, H. J. and Ashby, M. F., Deformation Mechanism Maps (Pergamon Press, Oxford, 1982).Google Scholar
31.Helle, A. S., Easterling, K. E., and Ashby, M. F., Acta Metall. 33, 2163 (1985).CrossRefGoogle Scholar
32.Prabhu, G. B. and Bourell, D. L., Scripta Metall. Mater. 33, 761 (1995).CrossRefGoogle Scholar
33.Nieh, T. G. and Wadsworth, J., Scripta Metall. 22, 1297 (1988).Google Scholar
34.Prabhu, G. B. and Bourell, D. L., NanoStructured Mater. 6, 361 (1995).Google Scholar
35.Burggraaf, A. J., Winnubst, A. J. A., and Verweij, H., in Third Euro-Ceramics, edited by Duran, P. and Fernandez, J. F. (Faenza Editrice Iberica, Spain, 1993), Vol. 3, p. 561.Google Scholar
36.Paidar, V. and Takeuchi, S., Acta Metall. Mater. 40, 1773 (1992).CrossRefGoogle Scholar
37.Wakai, F. and Nagano, T., J. Mater. Sci. 26, 241 (1991).CrossRefGoogle Scholar
38.Wang, N., Wang, Z., Aust, K. T., and Erb, U., Acta Metall. Mater. 43, 519 (1995).CrossRefGoogle Scholar
39.Lange, F. F., J. Mater. Sci. 17, 240 (1982).CrossRefGoogle Scholar
40.Becher, P. F. and Swain, M. V., J. Am. Ceram. Soc. 75, 493 (1992).CrossRefGoogle Scholar
41.Lange, F. F., J. Mater. Sci. 17, 255 (1982).CrossRefGoogle Scholar