Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T16:14:02.128Z Has data issue: false hasContentIssue false

Fabrication, chemical etching, and compressive strength of porous biomimetic SiC for medical implants

Published online by Cambridge University Press:  31 January 2011

Carmen Torres-Raya
Affiliation:
Dpto. Física de la Materia Condensada-ICMSE, Universidad de Sevilla-CSIC 41012 Sevilla, Spain
David Hernandez-Maldonado
Affiliation:
Dpto. Física de la Materia Condensada-ICMSE, Universidad de Sevilla-CSIC 41012 Sevilla, Spain
Joaquin Ramirez-Rico*
Affiliation:
Dpto. Física de la Materia Condensada-ICMSE, Universidad de Sevilla-CSIC 41012 Sevilla, Spain
Carmen Garcia-Gañan
Affiliation:
Dpto. Física de la Materia Condensada-ICMSE, Universidad de Sevilla-CSIC 41012 Sevilla, Spain
Antonio R. de Arellano-Lopez
Affiliation:
Dpto. Física de la Materia Condensada-ICMSE, Universidad de Sevilla-CSIC 41012 Sevilla, Spain
Julian Martinez-Fernandez
Affiliation:
Dpto. Física de la Materia Condensada-ICMSE, Universidad de Sevilla-CSIC 41012 Sevilla, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

BioSiC is a biomimetic SiC-based ceramic material fabricated by Si melt infiltration of carbon preforms obtained from wood. The microstructure of bioSiC mimics that of the wood precursor, which can be chosen for tailored properties. When the remaining, unreacted Si is removed, a SiC material with interconnected porosity is obtained. This porous bioSiC is under study for its use as a medical implant material. We have successfully fabricated bioSiC from Sipo wood and studied the kinetics of Si removal by wet etching. The results suggest that the reaction is diffusion-limited, and the etch rate follows a t−0.5 law. The etching rate is found to be anisotropic, which can be explained attending to the anisotropy of the pore distribution. The compressive strength was studied as a function of etching time, and the results show a quadratic dependence with density. In the attainable range of densities, the strength is similar or better than that of human bone.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Singh, M., Martinez-Fernandez, J., de Arellano-Lopez, A.R.: Environmentally conscious ceramics (ecoceramics) from natural wood precursors. Curr. Opin. Solid State Mater. Sci. 7, 247 2003CrossRefGoogle Scholar
2de Arellano-Lopez, A.R., Martinez-Fernandez, J., Gonzalez, P., Dominguez, C., Fernandez-Quero, V., Singh, M.: Biomorphic SiC: A new engineering ceramic material. Int. J. Appl. Ceram. Technol. 1, 56 2004CrossRefGoogle Scholar
3Greil, P.: Biomorphous ceramics from lignocellulosics. J. Eur. Ceram. Soc. 21, 105 2001CrossRefGoogle Scholar
4Ota, T., Takahashi, M., Hibi, T., Ozawa, M., Suzuki, S., Hikichi, Y., Suzuki, H.: Biomimetic process for producing SiC “wood”. J. Am. Ceram. Soc. 78, 3409 1995CrossRefGoogle Scholar
5Sieber, H., Hoffmann, C., Kaindl, A., Greil, P.: Biomorphic cellular ceramics. Adv. Eng. Mater. 2, 105 20003.0.CO;2-P>CrossRefGoogle Scholar
6Byrne, C.E., Nagle, D.C.: Cellulose derived composites— A new method for materials processing. Mater. Res. Innovations 1, 137 1997CrossRefGoogle Scholar
7Byrne, C.E., Nagle, D.C.: Carbonization of wood for advanced materials applications. Carbon 35, 259 1997CrossRefGoogle Scholar
8Byrne, C.E., Nagle, D.C.: Carbonized wood monoliths—Characterization. Carbon 35, 267 1997CrossRefGoogle Scholar
9Zollfrank, C., Sieber, H.: Microstructure evolution and reaction mechanism of biomorphous SiSiC ceramics. J. Am. Ceram. Soc. 88, 51 2005CrossRefGoogle Scholar
10Martinez-Fernandez, J., Valera-Feria, F.M., Singh, M.: High temperature compressive mechanical behavior of biomorphic silicon carbide ceramics. Scr. Mater. 43, 813 2000CrossRefGoogle Scholar
11Kaul, V.S., Faber, K.T., Sepulveda, R., de Arellano-Lopez, A.R., Martinez-Fernandez, J.: Precursor selection and its role in the mechanical properties of porous SiC derived from wood. Mater. Sci. Eng., A 428, 225 2006CrossRefGoogle Scholar
12Varela-Feria, F.M., Lopez-Robledo, M.J., Martinez-Fernandez, J., de Arellano-Lopez, A.R., Singh, M.: Precursor selection for property optimization in biomorphic SiC ceramics. Ceram. Eng. Sci. Proc. 23, 681 2002CrossRefGoogle Scholar
13Varela-Feria, F.M., Ramirez-Rico, J., de Arellano-Lopez, A.R., Martinez-Fernandez, J., Singh, M.: Reaction-formation mechanisms and microstructure evolution of biomorphic SiC. J. Mater. Sci. 43, 933 2008CrossRefGoogle Scholar
14Borrajo, J.P., Gonzalez, P., Serra, J., Liste, S., Chiussi, S., Leon, B., De Carlos, A., Varela-Feria, F.M., Martinez-Fernandez, J., de Arellano-Lopez, A.R.: Cytotoxicity study of biomorphic SiC ceramics coated with bioactive glass. Bol. Soc. Esp. Ceram. Vid. 45, 109 2006CrossRefGoogle Scholar
15Gonzalez, P., Borrajo, J.P., Serra, J., Liste, S., Chiussi, S., Leon, B., Semmelmann, K., De Carlos, A., Varela-Feria, F.M., Martinez-Fernandez, J., de Arellano-Lopez, A.R.: Extensive studies on biomorphic SiC ceramics properties for medical applications. Key Eng. Mater. 254–256, 1029 2004Google Scholar
16Gauthier, O., Bouler, J.M., Aguado, E., Pilet, P., Daculsi, G.: Macroporous biphasic calcium phosphate ceramics: Influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 19, 133 1998CrossRefGoogle ScholarPubMed
17Gonzalez, P., Serra, J., Liste, S., Chiussi, S., Leon, B., Perez-Amor, M., Martinez-Fernandez, J., de Arellano-Lopez, A.R., Varela-Feria, F.M.: New biomorphic SiC ceramics coated with bioactive glass for biomedical applications. Biomaterials 24, 4827 2003CrossRefGoogle ScholarPubMed
18De Carlos, A., Borrajo, J.P., Serra, J., Gonzalez, P., Leon, B.: Behaviour of MG-63 osteoblast-like cells on wood-based biomorphic SiC ceramics coated with bioactive glass. J. Mater. Sci. 17, 523 2006Google ScholarPubMed
19Gonzalez, P., Borrajo, J.P., Serra, J., Chiussi, S., Leon, B., Fernandez, J. Martinez, Feria, F.M. Varela, de Arellano-Lopez, A.R., De Carlos, A., Munoz, A., Lopez, M., Singh, M.: A new generation of bio-derived ceramic materials for medical applications. J. Biomed. Mater. Res. A (2008, DOI: 10.1002/jbm.a.31951)Google Scholar
20Keller, T.S.: Predicting the compressive mechanical behavior of bone. J. Biomech. 27, 1159 1994CrossRefGoogle ScholarPubMed
21Nalla, R.K., Kruzic, J.J., Kinney, J.H., Ritchie, R.O.: Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials 26, 217 2005CrossRefGoogle ScholarPubMed
22Bonfield, W.: Advances in the fracture mechanics of cortical bone. J. Biomech. 20, 1071 1987CrossRefGoogle ScholarPubMed
23Zioupos, P., Currey, J.D.: Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22, 57 1998CrossRefGoogle ScholarPubMed
24Vashishth, D., Behiri, J.C., Bonfield, W.: Crack growth resistance in cortical bone: Concept of microcrack toughening. J. Biomech. 30, 763 1997CrossRefGoogle ScholarPubMed
25Greil, P., Lifka, T., Kaindl, A.: Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J. Eur. Ceram. Soc. 18, 1961 1998CrossRefGoogle Scholar
26Monk, D.J., Soane, D.S., Howe, R.T.: Hydrofluoric acid etching of silicon dioxide sacrificial layers. II. Modeling. J. Electrochem. Soc. 141, 270 1994CrossRefGoogle Scholar
27Kulkarni, M.S., Erk, H.F.: Acid-based etching of silicon wafers: Mass-transfer and kinetic effects. J. Electrochem. Soc. 147, 176 2000CrossRefGoogle Scholar
28Elwenspoek, M., Lindberg, U., Kok, H., Smith, L.: Wet-chemical etching mechanism of silicon. Proc. IEEE Micro Electro Mechanical Systems,1994 223–228Google Scholar
29Steinert, M., Acker, J., Henßge, A., Wetzig, K.: Experimental studies on the mechanism of wet-chemical etching of silicon in HF/HNO3 mixtures. J. Electrochem. Soc. 152, C843 2005CrossRefGoogle Scholar
30Crank, J.: The Mathematics of Diffusion 2nd ed.Clarendon Press Oxford 1975 viii414Google Scholar
31Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 146, 54 1942CrossRefGoogle Scholar
32Sahimi, M., Gavalas, G.R., Tsotsis, T.T.: Statistical and continuum models of fluid-solid reactions in porous media. Chem. Eng. Sci. 45, 1443 1990CrossRefGoogle Scholar
33Pappacena, K.E., Faber, K.T., Wang, H., Porter, W.D.: Thermal conductivity of porous silicon carbide derived from wood precursors. J. Am. Ceram. Soc. 90, 2855 2007CrossRefGoogle Scholar
34Valera-Feria, F.M.: Fabrication, characterization and mechanical properties of biomorphic SiC. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain,2004Google Scholar
35Carter, D.R., Hayes, W.C.: Bone compressive strength: The influence of density and strain rate. Science 194, 1174 1976CrossRefGoogle ScholarPubMed
36Rice, R.W.: Porosity of Ceramics Marcel Dekker New York 1998Google Scholar
37Gibson, L.J., Ashby, M.F.: Mechanics of three-dimensional cellular materials. Proc. Roy. Soc. A 382, 43 1982Google Scholar
38Easterling, K.E., Harrysson, R., Gibson, L.J., Ashby, M.F.: On the mechanics of balsa and other woods. Proc. Roy. Soc. A 383, 31 1982Google Scholar