Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T09:17:42.720Z Has data issue: false hasContentIssue false

Fabrication and deformation of aluminum–manganese microsandwich structure

Published online by Cambridge University Press:  11 February 2016

Hesham Mraied
Affiliation:
Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, USA
Thanh Hai Tran
Affiliation:
Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, USA
Wenjun Cai*
Affiliation:
Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The combination of low areal density, high flexural rigidity, and open architecture makes metallic microsandwiching a promising candidate for structural frameworks in small-scale multifunctional devices. We demonstrate a one-step electrodeposition procedure to synthesize an aluminum–manganese (Al–Mn) microsandwich using a porous polycarbonate (PC) membrane template from room-temperature ionic liquid. Mn was added to refine the microstructure and increase the hardness of Al. A cyclic voltammogram study shows Mn codeposit with Al in an acidic chloroaluminate electrolyte. Increasing the MnCl2 concentration in the electrolyte from 0.05 to 0.25 M promoted a crystalline to amorphous phase transition of the deposited structures. Finally, mechanical properties and damage resistance of the microsandwiches were evaluated using nano- and micro-indentation tests as well as finite element methods.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fleck, N.A., Deshpande, V.S., and Ashby, M.F.: Micro-architectured materials: Past, present and future. Proc. R. Soc. A 466(2121), 24952516 (2010).Google Scholar
Kolodziejska, J.A., Roper, C.S., Yang, S.S., Carter, W.B., and Jacobsen, A.J.: Research update: Enabling ultra-thin lightweight structures: Microsandwich structures with microlattice cores. APL Mater. 3(5), 050701 (2015).Google Scholar
Xiong, J., Mines, R., Ghosh, R., Vaziri, A., Ma, L., Ohrndorf, A., Christ, H., and Wu, L.: Advanced micro-lattice materials. Adv. Eng. Mater. 17, 12531264 (2015).Google Scholar
Tian, J., Kim, T., Lu, T.J., Hodson, H.P., Queheillalt, D.T., Sypeck, D.J., and Wadley, H.N.G.: The effects of topology upon fluid-flow and heat-transfer within cellular copper structures. Int. J. Heat Mass Transfer 47(14–16), 31713186 (2004).Google Scholar
Lu, T.J., Valdevit, L., and Evans, A.G.: Active cooling by metallic sandwich structures with periodic cores. Prog. Mater. Sci. 50(7), 789815 (2005).Google Scholar
Roper, C.S.: Multiobjective optimization for design of multifunctional sandwich panel heat pipes with micro-architected truss cores. Int. J. Heat Fluid Flow 32(1), 239248 (2011).CrossRefGoogle Scholar
Gu, W.X. and Greer, J.R.: Ultra-strong architected Cu meso-lattices. Extreme Mech. Lett. 2, 714 (2015).Google Scholar
McCormack, T.M., Miller, R., Kesler, O., and Gibson, L.J.: Failure of sandwich beams with metallic foam cores. Int. J. Solids Struct. 38(28–29), 49014920 (2001).Google Scholar
Shuaeib, F.M. and Soden, P.D.: Indentation failure of composite sandwich beams. Compos. Sci. Technol. 57(9–10), 12491259 (1997).Google Scholar
Shen, Y., McKown, S., Tsopanos, S., Sutcliffe, C.J., Mines, R.A.W., and Cantwell, W.J.: The mechanical properties of sandwich structures based on metal lattice architectures. J. Sandwich Struct. Mater. 12(2), 159180 (2010).Google Scholar
Wadley, H.N.G., Fleck, N.A., and Evans, A.G.: Fabrication and structural performance of periodic cellular metal sandwich structures. Compos. Sci. Technol. 63(16), 23312343 (2003).Google Scholar
Yin, S., Wu, L.Z., Ma, L., and Nutt, S.: Hybrid truss concepts for carbon fiber composite pyramidal lattice structures. Composites, Part B 43(4), 17491755 (2012).CrossRefGoogle Scholar
Meza, L.R., Das, S., and Greer, J.R.: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345(6202), 13221326 (2014).Google Scholar
Ruan, S.Y. and Schuh, C.A.: Electrodeposited Al-Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater. 57(13), 38103822 (2009).Google Scholar
Ruan, S.Y. and Schuh, C.A.: Towards electroformed nanostructured aluminum alloys with high strength and ductility. J. Mater. Res. 27(12), 16381651 (2012).Google Scholar
Olson, J., Manjavacas, A., Liu, L., Chang, W., Foerster, B., King, N.S., Knight, M.W., Nordlander, P., Halas, N.J., and Link, S.: Vivid, full-color aluminum plasmonic pixels. Proc. Natl. Acad. Sci. U. S. A. 111(40), 1434814353 (2014).Google Scholar
Cheah, S.K., Perre, E., Rooth, M., Fondell, M., Harsta, A., Nyholm, L., Boman, M., Gustafsson, T., Lu, J., Simon, P., and Edstrom, K.: Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett. 9(9), 32303233 (2009).Google Scholar
Oltean, G., Nyholm, L., and Edstrom, K.: Galvanostatic electrodeposition of aluminium nano-rods for Li-ion three-dimensional micro-battery current collectors. Electrochim. Acta 56(9), 32033208 (2011).Google Scholar
Deshpande, V.S. and Fleck, N.A.: High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eng. 24(3), 277298 (2000).Google Scholar
Mukai, T., Kanahashi, H., Miyoshi, T., Mabuchi, M., Nieh, T.G., and Higashi, K.: Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scr. Mater. 40(8), 921927 (1999).CrossRefGoogle Scholar
Verdieck, R.G. and Yntema, L.F.: The electrochemistry of baths of fused aluminum halides. I. Aluminum as a reference electrode. J. Phys. Chem. 46(3), 344352 (1942).CrossRefGoogle Scholar
Tsuda, T., Hussey, C.L., and Stafford, G.R.: Electrodeposition of Al-Mo-Mn ternary alloys from the Lewis acidic AlCl3-EtMeImCl molten salt. J. Electrochem. Soc. 152(9), C620C625 (2005).Google Scholar
Su, C.J., Hsieh, Y.T., Chen, C.C., and Sun, I.W.: Electrodeposition of aluminum wires from the Lewis acidic AlCl3/trimethylamine hydrochloride ionic liquid without using a template. Electrochem. Commun. 34, 170173 (2013).Google Scholar
Uchida, J., Tsuda, T., Yamamoto, Y., Seto, H., Abe, M., and Shibuya, A.: Electroplating of amorphous aluminum manganese alloy from molten-salts. ISIJ Int. 33(9), 10291036 (1993).CrossRefGoogle Scholar
Stafford, G.R. and Hussey, C.L.: Electrodeposition of transition metal-aluminum alloys from chloroaluminate molten salts. In Advances in Electrochemical Science and Engineering; Alkire, Richard C. and Kolb, Dieter M., eds. (Wiley-VCH Verlag GmbH: Weinheim, 2001); pp. 313328.Google Scholar
Boon, J.A., Levisky, J.A., Pflug, J.L., and Wilkes, J.S.: Friedel crafts reactions in ambient-temperature molten-salts. J. Org. Chem. 51(4), 480483 (1986).Google Scholar
Li, Q.F., Hjuler, H.A., Berg, R.W., and Bjerrum, N.J.: Electrochemical deposition and dissolution of aluminum in NaAlCl4 melts: Influence of MnCl2 and sulfide addition. J. Electrochem. Soc. 137(9), 27942798 (1990).Google Scholar
Huo, S. and Schwarzacher, W.: Anomalous scaling of the surface width during Cu electrodeposition. Phys. Rev. Lett. 86(2), 256259 (2001).Google Scholar
Dammers, A.J. and Radelaar, S.: 2-dimensional computer modeling of polycrystalline film growth. Textures Microstruct. 14, 757762 (1991).Google Scholar
Liu, X.J., Ohnuma, I., Kainuma, R., and Ishida, K.: Thermodynamic assessment of the aluminum-manganese (Al-Mn) binary phase diagram. J. Phase Equilib. 20(1), 4556 (1999).Google Scholar
Tian, M.L., Wang, J.U., Kurtz, J., Mallouk, T.E., and Chan, M.H.W.: Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3(7), 919923 (2003).Google Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(06), 15641583 (1992).CrossRefGoogle Scholar
Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85(2), 7787 (2005).Google Scholar
Ruan, S.Y., Torres, K.L., Thompson, G.B., and Schuh, C.A.: Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al-Mn alloys. Ultramicroscopy 111(8), 10621072 (2011).Google Scholar
Cardarelli, F.: Materials Handbook: A Concise Desktop Reference, 2nd ed. (Springer-Verlag, London, 2008).Google Scholar