Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T19:01:13.487Z Has data issue: false hasContentIssue false

Extent of plasma damage to porous organosilicate films characterized with nanoindentation, x-ray reflectivity, and surface acoustic waves

Published online by Cambridge University Press:  03 March 2011

F. Iacopi*
Affiliation:
IMEC, B-3001 Leuven, Belgium
Y. Travaly
Affiliation:
IMEC, B-3001 Leuven, Belgium
M. Van Hove
Affiliation:
IMEC, B-3001 Leuven, Belgium
A.M. Jonas
Affiliation:
Unité de Physique et de Chimie des Hauts Polymères, Université Catholique de Louvain, Belgium
J.M. Molina-Aldareguia
Affiliation:
CEIT and TECNUN (University of Navarra), 20018 San Sebastián, Spain
M.R. Elizalde
Affiliation:
CEIT and TECNUN (University of Navarra), 20018 San Sebastián, Spain
I. Ocaña
Affiliation:
CEIT and TECNUN (University of Navarra), 20018 San Sebastián, Spain
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

It is known that porous organosilicate glass (OSG) dielectrics tend to lose functional groups and become denser upon the chemical and physical action of the plasmas, but an accurate analysis and estimation of the depth and degree of film densification is not straightforward. In this study, we show that the combination of techniques like x-ray reflectivity, surface acoustic waves, and nanoindentation in depth-sensing and modulus mapping mode allow a complete and self-consistent physical analysis of the damage induced by the direct exposure of porous OSG films to different plasma ambients in reactive ion etching mode. We demonstrate for the chosen dielectric that the characteristics of the damage regions such as density and elastic modulus are very similar regardless of the reducing or oxidizing nature of the plasma. Nevertheless, the physical depth of the damage region shows large variation. Capabilities and limitations of each of the chosen analysis techniques are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iacopi, F., Brongersma, S., Mazurenko, A., Struyf, H., Mannaert, G., Travaly, Y., Maznev, A., Abell, T.J., Tower, J., Maex, K. Surface acoustic waves as a technique for in-line detection of processing damage to low-k dielectrics, in Proc. IEEE International Interconnect Technology Conference, edited by Case, C., Lee, J-g., and Louis, D. (IEEE, Piscataway, NJ, 2005), pp. 217219.Google Scholar
2.Iacopi, F., Brongersma, S., Mazurenko, A., Maex, K.Perspectives on the characterization of elastic properties of thin soft films with acoustic techniques, Presented at 12th International Conference on Composites and Nanoengineering (ICCE-12),1-6 August 2005,Tenerife, Spain.Google Scholar
3.Maex, K., Baklanov, M.R., Shamiryan, D., Iacopi, F., Brongersma, S.H., Yanoviskaya, Z.S.: Low-dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 (2003).CrossRefGoogle Scholar
4.Iacopi, F., Maex, K., Stucchi, M., Richard, O.The electrical equivalent sidewall damage in patterned low-k dielectrics. Electrochem. Solid-State Lett. 7, G79 (2004).CrossRefGoogle Scholar
5.Iacopi, F., Brongersma, S.H., Vandevelde, B., Travaly, Y., Maex, K.: Challenges for structural stability of ultra-low-k-based interconnects. Microelectron. Eng. 75, 54 (2004).CrossRefGoogle Scholar
6.Furukawa, Y., Wolters, R., Roosen, H., Snijders, J.H.M., Hoofman, R.: Etch and strip-induced material modification of porous low-k (k = 2.2) dielectric. Microelectron. Eng. 76, 25 (2004).CrossRefGoogle Scholar
7.Chen, W., Han, Q.Y., Most, R., Waldfried, C., Escorcia, O., Berry, I.: Plasma impacts to an O–SiC low-k barrier film. J. Electrochem. Soc. 151, F182 (2004).CrossRefGoogle Scholar
8.Ling, L., Hua, X., Li, X., Oehrlein, G.S., Hudson, E.A., Lazzeri, P., Anderle, M. Investigation of surface modification of 193 nm and 248 nm photoresist materials during low-pressure plasma etching, in 31st IEEE International Conference on Plasma Science, edited by Comisso, R.J. and Parker, R.K. (IEEE, Piscataway, NJ, 2004), p. 168.Google Scholar
9.Travaly, Y., Schuhmacher, J., Hoyas, A.M., Van Hove, M., Maex, K., Abell, T., Sutcliffe, V., Jonas, A.M.: Interface characterization of nanoscale laminate structures on dense dielectric substrates by x-ray reflectivity. J. Appl. Phys. 97, 084316 (2005).CrossRefGoogle Scholar
10.Rogers, J.A., Maznev, A., Banet, M.J., Nelson, K.A.: Optical generation and characterization of acoustic waves in thin films: Fundamentals and applications. Annu. Rev. Mater. Sci. 30, 117 (2000).CrossRefGoogle Scholar
11.Farnell, G.W., Adler, E.L. In Physical Acoustics IX, edited by Mason, W.P. and Thurston, R.N. (Academic Press, New York, 1972), pp. 35127.Google Scholar
12.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
13.Asif, S.A. Syed, Wahl, K.J., Colton, R.J., Warren, O.L.: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192 (2001).CrossRefGoogle Scholar
14.Abell, T.J., Iacopi, F., Prokopowicz, G., Sun, B., Mazurenko, A., Travaly, Y., Baklanov, M., Sullivan, C., Brongersma, S., Liou, H-C., Tower, J., Gostein, M., Gallagher, M., Calvert, J., Moinpour, M., Maex, K. Comparison of modulus and density measurements by nanoindentation, SAWS, XRR and EP techniques of a porous MSQ dielectric, in Proc. Advanced Metallization Conference 2004, edited by Erb, D., Ramm, P., Masu, K., and Osaki, A. (Materials Research Society, Warrendale, PA, 2005), pp. 457462.Google Scholar
15.Iacopi, F., Laknin, M., Mulloy, A., Toonder, J.M.J. den, Vanhaeren, D., Brongersma, S.H. On factors affecting the extraction of elastic modulus by nanoindentation of organic polymer films, in Fundamentals of Nanoindentation and Nanotribology III, edited by Wahl, K.J., Huber, N., Mann, A.B., Bahr, D.F., and Cheng, Y-T. (Mater. Res. Soc. Symp. Proc. 841, Warrendale, PA, 2005), pp. 181186.Google Scholar