Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T13:16:16.685Z Has data issue: false hasContentIssue false

The extent of phase transformation in silicon hardness indentations

Published online by Cambridge University Press:  31 January 2011

Daniel L. Callahan
Affiliation:
Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas 77251-1892
Jonathan C. Morris
Affiliation:
Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas 77251-1892
Get access

Abstract

The extent of phase transformation occurring in silicon during room-temperature indentation experiments has been examined by transmission electron microscopy of low-load microindents. The results show that the entire hardness impression arises from structural transformation and extrusion of a ductile high pressure phase. In particular, there is no dislocation activity or other mechanism of plastic deformation operating outside the clearly demarcated transformation zone. The observable impression consists of an amorphous transformation zone with an adjacent region of plastically extruded material and a layer of polycrystalline silicon at the near-surface transformation interface.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gridneva, I. V., Milman, Yu. V., and Trefilov, V. I., Phys. Status Solidi (a) 14, 177 (1972).CrossRefGoogle Scholar
2.Clarke, D. R., Kroll, M. C., Kirchner, P. D., Cook, R. F., and Hockey, B. J., Phys. Rev. Lett. 21, 2156 (1988).Google Scholar
3.Pharr, G. M., Oliver, W. C., and Clarke, D. R., Scripta Metall. 23, 1949 (1989).CrossRefGoogle Scholar
4.Pharr, G. M., Oliver, W. C., and Clarke, D. R., J. Elec. Mater. 19, 881 (1990).CrossRefGoogle Scholar
5.Pharr, G. M., Oliver, W. C., and Harding, D. S., J. Mater. Res. 6, 1129 (1991).CrossRefGoogle Scholar
6.Minomura, S. and Drickamer, H. G., Phys. Chem. Solids 23, 451 (1962).CrossRefGoogle Scholar
7.Wentorf, R. H. and Kasper, J. S., Science 139, 338 (1963).Google Scholar
8.Kasper, J. S. and Richards, S. M., Acta Cryst. 17, 752 (1964).CrossRefGoogle Scholar
9.Hu, J. Z., Merkle, L. D., Menoni, C. S., and Spain, I. L., Phys. Rev. B 34, 4679 (1986).CrossRefGoogle Scholar
10.Shimomura, O., Minomura, S., Sakai, N., Asaumi, K., Tamura, K., Fukushima, J., and Endo, H., Philos. Mag. 29, 547 (1974).CrossRefGoogle Scholar
11.Minomura, S., in Localization and Metal-Insulator Transitions, edited by H., Fritzsche and D., Adler (Plenum Press, New York, 1985), p. 63.CrossRefGoogle Scholar
12.Gerk, A. P. and Tabor, D., Nature 271, 732 (1978).Google Scholar
13.Gilman, J. J., J. Mater. Res. 7, 535 (1992).CrossRefGoogle Scholar
14.Pharr, G. M., in Thin Films: Stresses and Mechanical Properties III (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992).Google Scholar