Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T14:49:34.151Z Has data issue: false hasContentIssue false

Exploring the structural, mechanical, thermodynamic, and electronic properties of (Ni0.66, Zn0.33)3Sn4 ternary intermetallic compounds by the first-principles study

Published online by Cambridge University Press:  20 January 2020

Xiang Lin
Affiliation:
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072, People's Republic of China
Weiwei Zhang*
Affiliation:
Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
Zhuo Mao
Affiliation:
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072, People's Republic of China
Xiaodong Jian
Affiliation:
National Supercomputer Center in Tianjin, TEDA Tianhe Science and Technology Park, Tianjin, 300457, People's Republic of China
Ping Wu*
Affiliation:
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072, People's Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Using the first-principles calculation combined with the structure searching method, the ternary intermetallic compound (IMC) (Ni0.66, Zn0.33)3Sn4 with $R\bar 3m$ space group is predicted. The energetic, dynamic, thermal, and mechanical stabilities of the (Ni0.66, Zn0.33)3Sn4 IMC are confirmed. The mechanical, thermodynamic, and electronic characteristics at different pressures from 0 to 20 Gpa for the (Ni0.66, Zn0.33)3Sn4 IMC are also investigated. The results show that the (Ni0.66, Zn0.33)3Sn4 IMC possesses a ductile trait within 20 Gpa and that pressurization can increase its elastic modulus, hardness, anisotropy, Debye temperature, and minimum thermal conductivity. At a given pressure, the thermal expansion coefficient α increases significantly below 200 K, and then its increase rate approaches a linear mode as the temperature increases. Compared with the case of 0 GPa, the shapes of the total density of states and partial density of states for the (Ni0.66, Zn0.33)3Sn4 IMC change slightly at pressure 20 Gpa, implying that its structure is still stable under pressure 20 GPa.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, C.H.: Study of the effects of Zn content on the interfacial reactions between Sn–Zn solders and Ni substrates at 250 °C. J. Electron. Mater. 39, 2375 (2010).CrossRefGoogle Scholar
Wang, C.H., Chen, H.H., and Lai, W.H.: Effects of minor amounts of Zn on the Sn–Zn/Ni interfacial reactions and phase equilibria of the ternary Sn–Zn–Ni system at 250 °C. J. Electron. Mater. 40, 2436 (2011).CrossRefGoogle Scholar
Zhao, N., Deng, J.F., Zhong, Y., Ma, H.T., Wang, Y.P., and Wong, C.P.: Effect of Zn content on interfacial reactions of Ni/Sn–xZn/Ni joints under temperature gradient. J. Mater. Res. 32, 3555 (2017).CrossRefGoogle Scholar
El-Daly, A.A., Hammad, A.E., Al-Ganainy, G.A., and Ibrahiem, A.A.: Enhancing mechanical response of hypoeutectic Sn–6.5Zn solder alloy using Ni and Sb additions. Mater. Des. 52, 966 (2013).CrossRefGoogle Scholar
Zhao, N., Wang, M.Y., Zhong, Y., Ma, H.T., Wang, Y.P., and Wong, C.P.: Effect of Zn content on Cu–Ni cross-interaction in Cu/Sn–xZn/Ni micro solder joints. J. Mater. Sci.: Mater. Electron. 29, 5064 (2018).Google Scholar
Zhong, Y., Zhao, N., Dong, W., Wang, Y.P., and Ma, H.T.: In situ study on the effect of Cu5Zn8 intermetallic layer on the Cu–Ni crossinteraction in Cu/Sn–9Zn/Ni interconnect under temperature gradient. Mater. Chem. Phys. 216, 130 (2018).CrossRefGoogle Scholar
Massalski, T.B.: Binary Alloy Phase Diagrams, 2nd ed., Vol. 2 (ASM International, Ohio, 1992); p. 3416.Google Scholar
Abtew, M. and Selvaduray, G.: Lead-free solders in microelectronics. Mater. Sci. Eng., R 27, 95 (2000).CrossRefGoogle Scholar
Wang, J.Y., Lin, C.F., and Chen, C.M.: Retarding the Cu5Zn8 phase fracture at the Sn–9 wt% Zn/Cu interface. Scr. Mater. 64, 633 (2011).CrossRefGoogle Scholar
Date, M., Tu, K.N., Shoji, T., Fujiyoshi, M., and Sato, K.: Interfacial reactions and impact reliability of Sn–Zn solder joints on Cu or electroless Au/Ni(P) bond-pads. J. Mater. Res. 19, 2887 (2004).CrossRefGoogle Scholar
Ho, C.E., Zheng, R., Luo, G.L., Lin, A.H., and Kao, C.R.: Formation and resettlement of (AuxNi1–x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish. J. Electron. Mater. 29, 1175 (2000).CrossRefGoogle Scholar
Wang, C.H. and Shen, H.T.: Effects of Ni addition on the interfacial reactions between Sn–Cu solders and Ni substrate. Intermetallics 18, 616 (2010).CrossRefGoogle Scholar
Liou, W.K., Yen, Y.W., and Jao, C.C.: Interfacial reactions of Sn–9Zn–xCu (x = 1, 4, 7, 10) solders with Ni substrates. J. Electron. Mater. 38, 2222 (2009).CrossRefGoogle Scholar
Kotadia, H.R., Mokhtari, O., Bottrill, M., Clode, M.P., Green, M.A., and Mannan, S.H.: Reactions of Sn–3.5Ag-based solders containing Zn and Al additions on Cu and Ni(P) substrates. J. Electron. Mater. 39, 2720 (2010).CrossRefGoogle Scholar
Chou, C.Y., Chen, S.W., and Chang, Y.S.: Interfacial reactions in the Sn–9Zn–(xCu)/Cu and Sn–9Zn–(xCu)/Ni couples. J. Mater. Res. 21, 1849 (2006).CrossRefGoogle Scholar
Chang, J., Seo, S.K., and Lee, H.M.: Phase equilibria in the Sn–Ni–Zn ternary system: Isothermal sections at 200 °C, 500 °C, and 800 °C. J. Electron. Mater. 39, 2643 (2010).CrossRefGoogle Scholar
Wang, Y.C., Lv, J., Zhu, L., and Ma, Y.M.: Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).CrossRefGoogle Scholar
Wang, Y.C., Lv, J., Zhu, L., and Ma, Y.M.: CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 183, 2063 (2012).CrossRefGoogle Scholar
Born, M. and Huang, K.: Dynamical Theory and Experiment I (Springer, Berlin, 1982).Google Scholar
Liu, Q.J., Qin, H., Jiao, Z., Liu, F.S., and Liu, Z.T.: First-principles calculations of structural, elastic, and electronic properties of trigonal ZnSnO3 under pressure. Mater. Chem. Phys. 180, 75 (2016).CrossRefGoogle Scholar
Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349 (1952).CrossRefGoogle Scholar
Zhou, W., Liu, L.J., Li, B.L., Song, Q.G., and Wu, P.: Structural, elastic, and electronic properties of Al–Cu intermetallics from first-principles calculations. J. Electron. Mater. 38, 356 (2009).CrossRefGoogle Scholar
Nye, J.F.: Physical Properties of Crystals (Oxford University Press, Oxford, 1985).Google Scholar
Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
Anderson, O.L.: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).CrossRefGoogle Scholar
Cahill, D.G., Watson, S.K., and Pohl, R.O.: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 10, 6131 (1992).CrossRefGoogle Scholar
Blanco, M.A., Francisco, E., and Luana, V.: GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004).CrossRefGoogle Scholar
Francisco, E., Blanco, M.A., and Sanjurjo, G.: Atomistic simulation of SrF2 polymorphs. Phys. Rev. B 63, 094107 (2001).CrossRefGoogle Scholar
Wu, Y.F., Wu, B., Wei, Z.Y., Zhou, Z.Y., Zhao, C.F., Xiong, Y.P., Tou, S.S., Yang, S.J., Zhou, B.Y., and Shao, Y.Q.: Structural, half-metallic and elastic properties of the half-Heusler compounds NiMnM (M = Sb, as and Si) and IrMnAs from firstprinciples calculations. Intermetallics 53, 26 (2014).CrossRefGoogle Scholar
Huang, L.F., Lu, X.Z., Tennessen, E., and Rondinelli, J.M.: An efficient ab initio quasiharmonic approach for the thermodynamics of solids. Comput. Mater. Sci. 120, 84 (2016).CrossRefGoogle Scholar
Li, Y.W., Feng, X.L., Liu, H.Y., Hao, J., Redfern, S.A.T., Lei, W.W., Liu, D., and Ma, Y.M.: Route to high-energy density polymeric nitrogen t-N via He–N compounds. Nat. Commun. 9, 722 (2018).CrossRefGoogle ScholarPubMed
Wei, Q., Zhang, Q., Yan, H.Y., Zhang, M.G., Wei, B., Tang, B., and Liu, Q.J.: A new tetragonal superhard metallic carbon allotrope. J. Alloys Compd. 769, 347 (2018).CrossRefGoogle Scholar
Li, Q., Zhou, D., Zheng, W.T., Ma, Y.M., and Chen, C.F.: Global structural optimization of tungsten borides. Phys. Rev. Lett. 110, 136403 (2013).CrossRefGoogle ScholarPubMed
Fu, X., Xie, Y.E., and Chen, Y.P.: Predicting two-dimensional carbon phosphide compounds: C2P4 by the global optimization method. Comput. Mater. Sci. 144, 70 (2018).CrossRefGoogle Scholar
Gao, Y.F., Ying, P., Wu, Y.J., Chen, S., Ma, M.D., Wang, L.Y., Zhao, Z.S., and Yu, D.L.: First-principles studies of superhard BC8N structures. J. Appl. Phys. 125, 175108 (2019).CrossRefGoogle Scholar
Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Togo, A., Oba, F., and Tanaka, I.: First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).CrossRefGoogle Scholar
Togo, A. and Tanaka, I.: First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015).CrossRefGoogle Scholar