Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T12:27:08.763Z Has data issue: false hasContentIssue false

Exploring Biological Surfaces by Nanoindentation

Published online by Cambridge University Press:  03 March 2011

S. Enders
Affiliation:
Max Planck Institute for Metals Research, 70569 Stuttgart, Germany
N. Barbakadse
Affiliation:
Max Planck Institute for Metals Research, 70569 Stuttgart, Germany
S.N. Gorb
Affiliation:
Max Planck Institute for Metals Research, 70569 Stuttgart, Germany
E. Arzt
Affiliation:
Max Planck Institute for Metals Research, 70569 Stuttgart, Germany
Get access

Abstract

With the help of instrumented indentation, the mechanical behavior of a variety of biological systems was studied: the waxy zone of the pitcher plant (Nephenthes alata) adapted for attachment prevention, the head-to-thorax articulation system of a beetle (Pachnoda marginata) as an example of friction minimization, and the wing arresting system of the dung beetle (Geotrupes stercorarius) adapted for mechanical interlocking. We demonstrate that nanoindentation can successfully be applied to compliant and highly structured biological composite materials. Measuring the mechanical performance of these surfaces can provide important information for understanding the overall functioning of these systems. Tests on fresh and dried samples show the influence of desiccation on the results and point out the importance of native conditions during the measurements. However, these preliminary results also point to current limits of the test method and the need for adapting it and current theories to meet the specific requirements of biological materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nachtigall, W.Bionik (Springer Verlag, Berlin, Germany, 1998).CrossRefGoogle Scholar
2Scherge, M., Gorb, S.Biological Micro-and nanotribology, Natures solutions (Springer Verlag, Berlin, Germany, 2001).Google Scholar
3Tsui, T.Y., Oliver, W.C. and Pharr, G.M., J. Mater. Res. 11 752 (1996).Google Scholar
4Kraft, O., Saxa, D., Haag, M. and Wanner, A., Metallkd, Z.. 92 9 (2001).Google Scholar
5Goeken, M., Kempf, M., Bordenet, M. and Vehoff, H., Surf. Interface Anal. 27 302 (1999).3.0.CO;2-D>CrossRefGoogle Scholar
6Lim, Y.Y. and Chaudhri, M.M., Philos. Mag. A 79 2979 (1999).Google Scholar
7Van Landingham, M.R., Villarrubia, J.S., Guthrie, W.F. and Meyers, G.F., Macrom. Symp. 167 15 (2001).Google Scholar
8Akram, A., Briscoe, B.J., Adams, M.J. and Johnson, S.A., Philos. Mag. A 82 2103 (2002).Google Scholar
9Li, M., Palacio, M.L., Carter, C.B. and Gerberich, W.W., Thin Solid Films 416 174 (2002).Google Scholar
10Davidson, D.L. and Pharr, G.M.Journal of Composites Technology & Research 23 1022001.Google Scholar
11Sakai, M. and Nakano, Y., J. Mater. Res. 17 2161 (2002).CrossRefGoogle Scholar
12Fan, Z., Swadener, J.G., Rho, J.Y., Roy, M.E. and Pharr, G.M., J. Orthop. Res. 20 806 (2002).Google Scholar
13Rho, J.Y., Mishra, S.R., Chung, K., Bai, J. and Pharr, G.M., Ann. Biomed. Eng. 29 1082 (2001).Google Scholar
14Jamsa, T., Rho, J.Y., Fan, Z.F., MacKay, C.A., Marks, S.C. and Tuukkanen, J., J. Biomech. 35 161 (2002).Google Scholar
15Habelitz, S., Marshall, G.W., Balooch, M. and Marshall, S.J., J. Biomech. 35 995 (2002).Google Scholar
16Cuy, J.L., Mann, A.B., Livi, K.J., Teaford, M.F. and Weihs, T.P., Arch. Oral Biol. 47 281 (2002).CrossRefGoogle Scholar
17Tesh, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K.and Fratzel, P., Calcif. Tissue Int. 69 147 (2001).Google Scholar
18Andersen, S.O., Peter, M.G. and Poepstorff, P., Comp. Biochem. Physiol. 113B 689 (1996).CrossRefGoogle Scholar
19Jeffree, C.E., in B.E. Juniper, and T.R.E. Southwood, editors. Insects and the Plant Surface (Edward Arnold, London, 1983), p. 23.Google Scholar
20Neville, A.C.Biology of the Arthropod Cuticle (Springer Verlag, Berlin, Germany, 1975).CrossRefGoogle Scholar
21Gorb, E.V., Structural, mechanical, chemical, and functional diversity of waxes of the Nepenthes trapping system (unpublished).Google Scholar
22Barthlott, W., Neinhuis, C., Cutler, D., Ditsch, F., Meusel, I., Theisen, I., Wilhelmi, H.. Bot. J. Linn. Soc. 126 237 (1998).Google Scholar
23Barthlott, W. and Neinhuis, C., Planta 202 8 (1997).Google Scholar
24Eigebrode, S.D. and Jetter, R., Integr. Comp. Biol. 42 1091 (2002).CrossRefGoogle Scholar
25Gorb, E.V. and Gorb, S.N., Entom. Exp. Appl. 105 13 (2002).Google Scholar
26Gorb, S.N. and Popov, V.L., Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical & Engineering Sciences 360 211 (2002).Google Scholar
27Gaume, L., Gorb, S.N. and Rowe, N., New Phytologist 156 479 (2002).CrossRefGoogle Scholar
28Barbakadse, N., Enders, S., Gorb, S. and Arzt, E., The mechanics of friction reduction of the head ariculation of the beetle Pachnoda marginata (unpublished).Google Scholar
29Oliver, W.C. and Pharr, G.M.J. Mater. Res. 7, 1564 (1992).Google Scholar
30Wainwright, S.A., Biggs, W.D., Currey, J.D. and Gosline, J.M.Mechanical Design in Organisms (Edward Arnold Limited, London, U.K., 1976).Google Scholar
31Hengsberger, S., Kulik, A. and Zysset, P., Bone 30 178 (2002).Google Scholar
32Marshall, G.W., Haeblitz, S., Gallagher, R., Balooch, M., Balooch, G.and Marshall, S.J., J. Dent. Res. 80 1768 (2001).Google Scholar
33Arzt, E., Enders, S. and Gorb, S., Z. Metallkd. 93 5 (2002).CrossRefGoogle Scholar
34Gorb, S.Attachment Devices of Insect Cuticle (Kluwer Academic, London, U.K., 2001).Google Scholar
35Mann, A.B. and Pethica, J.B., Langmuir 12 4583 (1996).Google Scholar