Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T03:42:49.300Z Has data issue: false hasContentIssue false

Experimental investigation into tungsten carbide thin films as solid oxide fuel cell anodes

Published online by Cambridge University Press:  13 September 2016

Jun Jiang*
Affiliation:
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
Xiaofei Guan
Affiliation:
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
Judith Lattimer
Affiliation:
Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
Cynthia Friend
Affiliation:
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA; and Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
Atul Verma
Affiliation:
SiEnergy Systems LLC, Cambridge, Massachusetts 02110, USA
Masaru Tsuchiya
Affiliation:
SiEnergy Systems LLC, Cambridge, Massachusetts 02110, USA
Shriram Ramanathan
Affiliation:
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA; and School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Refractory carbides possess metal-like electronic and catalytic properties, which make them interesting candidates for anodes in solid oxide fuel cells. However, significant challenges include phase instability due to electrochemical potential gradient driven oxidation. This requires an understanding of both the chemical thermodynamics in operating environments along with direct measurement of the catalytic activity in fuel mixtures. Here, we present an experimental study on nanostructured WC as an anode for solid oxide fuel cells operating at 300–500 °C. This is enabled by combining calculated thermochemical equilibria validated against experiments at the material level and in fuel cell devices combined with flow reactor studies on fuel-selective catalytic activity directly at working anode interfaces. With an optimized anode microstructure and hydrogen–methane fuel mixtures, WC anode-based solid oxide fuel cells are shown to achieve a near-ideal open circuit voltage of 1.1 V at 500 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Weber, A. and Ivers-Tiffee, E.: Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. J. Power Sources 127, 273283 (2004).CrossRefGoogle Scholar
Kerman, K., Lai, B.K., and Ramanathan, S.: Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations. J. Power Sources 196, 26082614 (2011).CrossRefGoogle Scholar
Galinski, H., Ryll, T., Elser, P., Rupp, J.L.M., Bieberle-Hutter, A., and Gauckler, L.J.: Agglomeration of Pt thin films on dielectric substrates. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 235415 (2010).CrossRefGoogle Scholar
Ryll, T., Galinski, H., Schlagenhauf, L., Elser, P., Rupp, J.L.M., Bieberle-Hutter, A., and Gauckler, L.J.: Microscopic, and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte. Adv. Funct. Mater. 21, 565572 (2011).CrossRefGoogle Scholar
Goldschmidt, H.J.: Interstitial Alloys (Butterworth, London, 1967).CrossRefGoogle Scholar
Storms, E.K.: The Refractory Carbides (Academic, New York, 1967).Google Scholar
Toth, L.E.: Transition Metal Carbides, and Nitrides (Academic, New York, 1971).Google Scholar
Pierson, H.O.: Handbook of Chemical Vapor Deposition (CVD): Principles, Technology, and Applications (William Andrew Inc., New York, 1992).Google Scholar
Kittel, C.: Introduction to Solid State Physics, 7th ed. (Wiley-India, New Delhi, 1995).Google Scholar
Levy, R.B. and Boudart, M.: Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547549 (1973).CrossRefGoogle ScholarPubMed
Bennett, L.H., Cuthill, J.R., Mcaliste, A.J., Erickson, N.E., and Watson, R.E.: Electronic-structure and catalytic behavior of tungsten carbide. Science, 184, 563565 (1974).CrossRefGoogle ScholarPubMed
Houston, J.E., Laramore, G.E., and Park, R.L.: Surface electronic properties of tungsten, tungsten carbide, and platinum. Science 185, 258260 (1974).CrossRefGoogle ScholarPubMed
Colton, R.J., Huang, J.T.J., and Rabalais, J.W.: Electronic-structure of tungsten carbide and its catalytic behavior. Chem. Phys. Lett. 34, 337339 (1975).CrossRefGoogle Scholar
Fruhberger, B. and Chen, J.G.: Reaction of ethylene with clean and carbide-modified Mo(110): Converting surface reactivities of molybdenum to Pt-group metals. J. Am. Chem. Soc. 118, 1159911609 (1996).CrossRefGoogle Scholar
Hwu, H.H. and Chen, J.G.: Surface chemistry of transition metal carbides. Chem. Rev. 105, 185212 (2005).CrossRefGoogle ScholarPubMed
Ross, P.N. and Stonehart, P.: Relation of surface-structure to electrocatalytic activity of tungsten carbide. J. Catal. 48, 4259 (1977).CrossRefGoogle Scholar
Burstein, G.T., McIntyre, D.R., and Vossen, A.: Relative activity of a base catalyst toward electro-oxidation of hydrogen and methanol. Electrochem. Solid-State Lett. 5, A80A83 (2002).CrossRefGoogle Scholar
Yang, X.G. and Wang, C.Y.: Nanostructured tungsten carbide catalysts for polymer electrolyte fuel cells. Appl. Phys. Lett. 86, 224104 (2005).CrossRefGoogle Scholar
Ganesan, R. and Lee, J.S.: Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. Angew. Chem., Int. Ed. 44, 65576560 (2005).CrossRefGoogle ScholarPubMed
Torabi, A., Etsell, T.H., Semagina, N., and Sarkar, P.: Electrochemical behaviour of tungsten carbide-based materials as candidate anodes for solid oxide fuel cells. Electrochim. Acta 67, 172180 (2012).CrossRefGoogle Scholar
Torabi, A. and Etsell, T.H.: Tungsten carbide-based anodes for solid oxide fuel cells: Preparation, performance and challenges. J. Power Sources 212, 4756 (2012).CrossRefGoogle Scholar
Torabi, A. and Etsell, T.H.: Ni modified WC-based anode materials for direct methane solid oxide fuel cells. J. Electrochem. Soc. 159, B714B722 (2012).CrossRefGoogle Scholar
Kurlov, A.S. and Gusev, A.I.: Tungsten carbides and W–C phase diagram. Inorg. Mater. 42, 121127 (2006).CrossRefGoogle Scholar
Newkirk, A.E.: The oxidation of tungsten carbide. J. Am. Chem. Soc. 77, 45214522 (1955).CrossRefGoogle Scholar
Warren, A., Nylund, A., and Olefjord, I.: Oxidation of tungsten and tungsten carbide in dry and humid atmospheres. Int. J. Refract. Met. Hard Mater. 14, 345353 (1996).CrossRefGoogle Scholar
Brillo, J., Kuhlenbeck, H., and Freund, H.J.: Interaction of O2 with WC(0001). Surf. Sci. 409, 199206 (1998).CrossRefGoogle Scholar
Andersson, K.M. and Bergstrom, L.: Oxidation and dissolution of tungsten carbide powder in water. Int. J. Refract. Met. Hard Mater. 18, 121129 (2000).CrossRefGoogle Scholar
Hussain, A.M., Sudireddy, B.R., Hogh, J.V.T., and Bonanos, N.: A preliminary study on WO3-infiltrated W–Cu–ScYSZ anodes for low temperature solid oxide fuel cells. Fuel Cells 12, 530536 (2012).CrossRefGoogle Scholar
Xiong, H., Lai, B.K., Johnson, A.C., and Ramanathan, S.: Low-temperature electrochemical characterization of dense ultra-thin lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.8Fe0.2O3) cathodes synthesized by RF-sputtering on nanoporous alumina-supported Y-doped zirconia membranes. J. Power Sources 193, 589592 (2009).CrossRefGoogle Scholar
O'Hayre, R., Cha, S.W., Colella, W., and Prinz, F.B.: Fuel Cell Fundamentals, 2nd ed. (Wiley, New York, 2009).Google Scholar
Hakansson, K.L., Johansson, H.I.P., and Johansson, L.I.: High-resolution core-level study of hexagonal Wc(0001). Phys. Rev. B: Condens. Matter Mater. Phys. 49, 20352039 (1994).CrossRefGoogle ScholarPubMed
Fleisch, T.H. and Mains, G.J.: An XPS study of the UV reduction and photochromism of MoO3 and WO3. J. Chem. Phys. 76, 780786 (1982).CrossRefGoogle Scholar
Gassman, P.G., Macomber, D.W., and Willging, S.M.: Isolation and characterization of reactive intermediates and active catalysts in homogeneous catalysis. J. Am. Chem. Soc. 107, 23802388 (1985).CrossRefGoogle Scholar
Supplementary material: File

Jiang supplementary material

Figures S1-S7

Download Jiang supplementary material(File)
File 10.5 MB