Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T17:07:22.006Z Has data issue: false hasContentIssue false

Experimental evidence for a structural unit model of quasiperiodic grain boundaries in aluminum

Published online by Cambridge University Press:  31 January 2011

P.A. Deymier
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
M. Shamsuzzoha
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
J.D. Weinberg
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
Get access

Abstract

This paper presents a geometrical description of aperiodic grain boundaries within the framework of a quasiperiodic lattice. Experimental evidence is given in support of a structural unit model of quasiperiodic [100]45°twist and [100]45°twist plus tilt grain boundaries in aluminum.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kronberg, M. L. and Wilson, F. M., Trans. AIME 85, 26 (1964).Google Scholar
2.Smith, D. A. and Pond, R.C., Int. Metals Rev. 205, 61 (1976).Google Scholar
3.Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer, New York, 1980).Google Scholar
4.Balluffi, R. W., in Interfacial Segregation (ASM, Metals Park, OH, 1977).Google Scholar
5.Vitek, V., Sutton, A. P., Smith, D.A., and Pond, R.C., Grain Boundary Structure and Kinetics, edited by Balluffi, R. W. (ASM, Cleveland, OH, 1980).Google Scholar
6.Bishop, G. H. and Chalmers, B., Scripta Metall. 2, 133 (1968).CrossRefGoogle Scholar
7.Sutton, A. P. and Vitek, V., Philos. Trans. R. Soc. London A309, 1 (1983).Google Scholar
8.Bristowe, P.D. and Balluffi, R.W., J. Phys. Coll. 46, C4155 (1985).Google Scholar
9.Ichinose, H. and Ishida, Y., Philos. Mag. 43, 1253 (1981).CrossRefGoogle Scholar
10.Ichinose, H. and Ishida, Y., J. Phys., C439 (1985).Google Scholar
11.Krakow, W., Wetzel, J. T., and Smith, D. A., Philos. Mag. A53, 739 (1986).CrossRefGoogle Scholar
12.Krakow, W., Acta Metall. Mater. 38, 1031 (1990).CrossRefGoogle Scholar
13.Krakow, W., J. Mater. Res. 5, 2658 (1990).CrossRefGoogle Scholar
14.Rivier, N., J. Phys. 47, C3299 (1986).Google Scholar
15.Sutton, A. P., Acta Metall. 36, 1291 (1988).CrossRefGoogle Scholar
16.Katz, A. and Duneau, M., Scripta Metall. 20, 1211 (1986).CrossRefGoogle Scholar
17.Gratias, D. and Thalal, A., Philos. Mag. Lett. 57, 63 (1988).CrossRefGoogle Scholar
18.Sutton, A. P., Phase Transitions 16/17, 563 (1989).CrossRefGoogle Scholar
19.Rivier, N. and Lawrence, A.J.A., Proc. I.L.L./CODEST Workshop: “Quasicrystalline Materials,” Grenoble, France, edited by Janot, C.H. and Dubois, J.M., 256 (1988).Google Scholar
20.Shamsuzzoha, M., Smith, D.J., and Deymier, P.A., submitted to Philos. Mag.Google Scholar
21.Shamsuzzoha, M. and Deymier, P.A., Scripta Metall. Mater. 24, 1303 (1990).CrossRefGoogle Scholar
22.Pond, R. C. and Bollmann, W., Philos. Trans. R. Soc. London 292, 449 (1979).Google Scholar
23.Levine, D. and Steinhardt, P. J., Phys. Rev. Lett. 53, 2477 (1984).CrossRefGoogle Scholar
24.Gratias, D. and Cahn, J.W., Scripta Metall. 20, 1193 (1986).CrossRefGoogle Scholar
25.Penrose, R., Math. Intelligences 2, 32 (1979).CrossRefGoogle Scholar
26.Levine, D. and Steinhardt, P. J., Phys. Rev. B 34, 596 (1986).CrossRefGoogle Scholar
27.Gardner, M., Sci. Am. 236, 110 (1977).CrossRefGoogle Scholar
28.Weinberg, J.D., Shamsuzzoha, M., and Deymier, P.A., to be published in Ultramicroscopy, Proc. NSF Workshop on Structure and Properties of Interfaces, Wickenburg, AZ (1991).Google Scholar