Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T17:47:48.216Z Has data issue: false hasContentIssue false

Excimer laser-induced doping of crystalline silicon carbide films

Published online by Cambridge University Press:  03 March 2011

S. Krishnan*
Affiliation:
Center for Advanced Materials Processing and Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699
G.C. D'Couto*
Affiliation:
Center for Advanced Materials Processing and Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699
M.I. Chaudhry*
Affiliation:
Department of Electrical Engineering and Computer Engineering, Clarkson University Potsdam, New York 13699
S.V. Babu
Affiliation:
Center for Advanced Materials Processing and Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699
*
a)Now with Ultra Clean Technology, 150 Independence Drive, Menlo Park, California 94025.
b)Now with Praxair Corp., White Plains, New York.
c)Now with CHEMI Laboratories, Watervliet, New York 12189.
Get access

Abstract

0.25 μm thick, single crystal, n-type, silicon carbide (β-SiC) films thermally grown on p-type Si(100) were doped with boron by using KrF excimer laser radiation and a spin-on dopant with a boron concentration of 1020/cm3. The threshold fluence for the doping to occur was approximately 0.08 J/cm2. Similarly, p-SiC/n-SiC diodes were fabricated by laser-induced doping of single-crystal β-SiC (n-type, 6 μm thick) films on n-type Si(100). The diodes obtained at 0.25 J/cm2 showed good rectifying characteristics. The threshold fluence for surface modification and/or ablation was approximately 0.3 J/cm2, indicating that doping and diode formation have to be accomplished within the fluence window of 0.08 J/cm2-0.3 J/cm2 for these films.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kong, H.S., Glass, J. T., and Davis, R.F., Appl. Phys. Lett. 49, 1074 (1986).CrossRefGoogle Scholar
2Furumura, Y., Doki, M., Mieno, F., and Maeda, M., Electronics and Communications in Japan 70, 53 (1987).Google Scholar
3Kroko, L. J. and Milnes, A. G., Solid State Electron. 9, 1125 (1966).CrossRefGoogle Scholar
4Kutukora, O. G., Strel'sov, L. N, Sov. Phys. Semicond. 10, 265 (1976).Google Scholar
5Narayan, J, Young, R.T., Wood, R.F., and Christie, W.H., Appl. Phys. Lett. 33, 338 (1978).CrossRefGoogle Scholar
6Carey, P. G., Sigmon, T. W., Press, R. L., and Fahlen, T. S., IEEE Electron Device Lett. EDL–6, 291 (1985).CrossRefGoogle Scholar
7Dunlap, H.L. and Marsh, O.J., Appl. Phys. Lett. 15, 311 (1969).CrossRefGoogle Scholar
8Marsh, O.J., Silicon Carbide 1973, Proc. 3rd Int. Conf. on SiC, edited by Marshall, R. C., Faust, J. W., and Ryan, C. E. (SC Press, 1974).Google Scholar
9Makarov, V. V., Fiz. Tverd. Tela (Leningrad) [Sov. Phys. Solid State] 13, 2357 (1971).Google Scholar
10Patrick, L. and Choyke, W.J., Phys. Rev. B 5, 3253 (1972).CrossRefGoogle Scholar
11Marsh, O.J. and Dunlap, H.L., Rad. Eff. 6, 301 (1970).CrossRefGoogle Scholar
12Campbell, A.B., Mitchell, J.B., Shewchun, J., Thompson, D.A., Davies, J. A., Silicon Carbide 1973, Proc. 3rd Int. Conf. on SiC, edited by Marshall, R. C., Faust, J. W., Ryan, C. E. (SC Press, 1974).Google Scholar
13Violin, V., Demakov, K.D., Kal'nin, A. A., Nolbert, F., Potapov, E. N., Tairov, Yu.M., Sov. Phys. Solid State 26, 960 (1984).Google Scholar
14Makarov, V. V., Tuomi, T., and Naukkarinen, K., Appl. Phys. Lett. 35, 922 (1979).CrossRefGoogle Scholar
15Kaplan, R., Appl. Phys. Lett. 56, 1636 (1984).Google Scholar
16Foulon, F., Fogarassy, E., Slaoui, A., Fuchs, C., Unamuno, S., and Siffert, P., Appl. Phys. A45, 361 (1988).CrossRefGoogle Scholar
17Kato, S., Saeki, H., Wada, J., and Matsumoto, S.J., Electrochem. Soc, Solid State Tech. 135, 1030 (1988).Google Scholar
18Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. E., Anderson, G.B., J. Electronic Mat. 19, 241 (1990).CrossRefGoogle Scholar
19Chaudhry, M.I. and Wright, R.L., J. Mater. Res. 5, 1595 (1990).CrossRefGoogle Scholar
20Solangi, A. and Chaudhry, M.I., J. Mater. Res. 7, 539 (1992).CrossRefGoogle Scholar
21Slaoui, A., Foulon, F., and Siffert, P., J. Appl. Phys. 67, 6197 (1990).CrossRefGoogle Scholar
22Matsumoto, S., Yoshioka, S., Wada, J., Inui, S., and Uwasawa, K., J. Appl. Phys. 67, 7204 (1990).CrossRefGoogle Scholar
23Sanchez, G., Castano, J.L., Garrido, J., Martinez, J., and Piqueras, J., J. Electrochem. Soc. 138, 3039 (1991).CrossRefGoogle Scholar
24Tsai, J.C.C., VLSI Technology, 2nd ed., edited by Sze, S.M. (McGraw-Hill, New York, 1989).Google Scholar
25Batha, H.D. and Hardy, L.H., Silicon Carbide 1973, Proc. 3rd Int. Conf. on SiC, edited by Marshall, R.C., Faust, J.W., Ryan, C.E. (SC Press, 1974).Google Scholar