Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T15:52:08.621Z Has data issue: false hasContentIssue false

Evolution of stresses in passivated and unpassivated metal interconnects

Published online by Cambridge University Press:  31 January 2011

A. Gouldstone
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Y-L. Shen
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
S. Suresh
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
C. V. Thompson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Extract

This paper discusses computational simulations of the evolution of stresses and deformation in unpassivated and SiO2-passivated Al lines on Si substrates. The finite element model accounts for elastic-plastic deformation in the Al lines during etching, passivation, and subsequent thermal cycling, by recourse to a generalized plane strain formulation within the context of a unit cell with appropriately constrained boundary conditions. The effects of different controlled variations in thermal history, and in the width, height, spacing, and yield behavior of the Al lines are analyzed; all these factors are seen to have potentially strong effects on the evolution of stresses within the lines. The predictions of the computations presented in this work are amenable for direct comparisons with experiments of curvature evolution along and perpendicular to the lines upon patterning, passivation, and thermal loading. The predicted stresses in metal interconnects can be directly used for reliability modeling purposes.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Flinn, P. A., Mack, A. S., Besser, P. R., and Marieb, T. N., MRS Bull. 18 (12), 26 (1993).CrossRefGoogle Scholar
2.Sullivan, T. D., Annu. Rev. Mater. Sci. 26, 333 (1996).CrossRefGoogle Scholar
3.Korhonen, M. A., Borgensen, P., Tu, K-N., and Li, C-Y., J. Appl. Phys. 73, 3790 (1993).CrossRefGoogle Scholar
4.Clement, J. J. and Thompson, C. V., J. Appl. Phys. 78, 900 (1990).CrossRefGoogle Scholar
5.Knowlton, B. D., Thompson, C. V., and Clement, J. J., J. Appl. Phys. 81, 6073 (1997); B. D. Knowlton, Ph.D. Thesis, Massachusetts Institute of Technology (1996).Google Scholar
6.Sauter, A. I. and Nix, W. D., IEEE Trans. Comp. Hybrids Manufact. Technol. 15, 594 (1991).CrossRefGoogle Scholar
7.Greenebaum, B., Sauter, A. I., Flinn, P. A., and Nix, W. D., Appl. Phys. Lett. 58, 1845 (1991).CrossRefGoogle Scholar
8.Chidambarrao, D., Rodbell, K. P., Thouless, M. D., and DeHaven, P. W., Materials Reliability in Microelectronics IV, edited by Borgesen, P., Coburn, J. C., Sanchez, J. E. Jr., Rodbell, K. P., and Filter, W. F. (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 261.Google Scholar
9.Marieb, T., Mack, A. S., Cox, N., Gardner, D., and Xu, X. C., Polycrystalline Thin Films II: Structure, Texture, Properties, and Applications, edited by Frost, H. J., Ross, C. A., Parker, M. A., and Holm, E. A. (Mater. Res. Soc. Symp. Proc. 403, Pittsburgh, PA, 1996).Google Scholar
10.Lee, J., Ma, Q., Marieb, T., Mack, A. S., Fujimoto, H., Flinn, P. A., Woolery, B., and Keys, L., in Materials Reliability in Microelectronics V, edited by Oates, A. S., Gadepally, K., Rosenberg, R., Filter, W. F., and Greer, L. (Mater. Res. Soc. Symp. Proc. 391, Pittsburgh, PA, 1995), p. 115.Google Scholar
11.Shen, Y-L., Suresh, S., and Blech, I. A., J. Appl. Phys. 80, 1388 (1996).CrossRefGoogle Scholar
12.Flinn, P. A., Gardner, D. S., and Nix, W. D., IEEE Trans. Electron Dev. ED–34, 689 (1987).CrossRefGoogle Scholar
13.Anderson, S. G. H., Yeo, I. S., Ho, P. S., Ramaswami, S., and Cheung, R., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Ho, P. S., and Frost, H. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 261.Google Scholar
14.Townsend, P. H., Barnett, D. M., and Brunner, T. A., J. Appl. Phys. 62, 4438 (1987).CrossRefGoogle Scholar
15.Romero, J. D., Khan, M., Fatemi, H., and Turlo, J., J. Mater. Res. 6, 1996 (1991).CrossRefGoogle Scholar
16.Gillard, V. T. and Nix, W. D., Z. Metallkd. 84, 874 (1993).Google Scholar
17.Burges, U., Helneder, H., Korner, H., Schroeder, H., and Schilling, W., in Materials Reliability in Microelectronics IV, edited by Borgesen, P., Coburn, J. C., Sanchez, J. E. Jr., Rodbell, K. P., and Filter, W. F. (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 247.Google Scholar
18.Proost, J., Witvrouw, A., Cosemans, P., Roussel, Ph., and Maex, K., Microelectronic Engng. 33, 137 (1997).CrossRefGoogle Scholar
19.Finot, M., Blech, I. A., Suresh, S., and Fujimoto, H., J. Appl. Phys. 81, 3457 (1997).CrossRefGoogle Scholar
20.Chu, E. C., Shen, Y-L., and Suresh, S., Technical Report Lexcom 9/96, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
21.Gouldstone, A., Srikar, V. T., Shen, Y-L., Suresh, S., and Thompson, C. V., research in progress, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
22.ABAQUS, Version 5.4, general purpose finite element program, Hibbit, Karlson, and Sorensen, Inc., Pawtucket, RI (1995).Google Scholar
23.Shen, Y-L., J. Mater. Res. 12, 2219 (1997).CrossRefGoogle Scholar
24.Shen, Y-L. and Suresh, S., Acta Metall. Mater. 43, 3915 (1995).Google Scholar
25.Niwa, H., Yagi, H., and Tsuchikawa, H., J. Appl. Phys. 68, 1 (1990).CrossRefGoogle Scholar
26.Povirk, G. L., Mohan, R., and Brown, S. B., J. Appl. Phys. 77, 598 (1995).CrossRefGoogle Scholar
27.Yeo, I.-S., Anderson, S. G. H., Ho, P. S., and Hu, C. K., J. Appl. Phys. 78, 953 (1995).CrossRefGoogle Scholar
28.Shen, Y-L., J. Appl. Phys. 82, 1578 (1997).CrossRefGoogle Scholar
29.Flinn, P. A. and Waychunas, G. A., J. Vac. Sci. Technol. B 6, 1749 (1988).CrossRefGoogle Scholar
30.Flinn, P. A. and Chiang, C., J. Appl. Phys. 67, 2927 (1990).CrossRefGoogle Scholar
31.Maniguet, L., Ignat, M., Dupeux, M., Bacmann, J. J., and Normandon, Ph., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 217.Google Scholar
32.Maniguet, L., Ignat, M., Dupeux, M., Flinn, P. A., Normandon, Ph., Gergaud, P., and Bacmann, J. J., in Advanced Metallization for ULSI Applications 1992, edited by Cale, T. S. and Pintchovski, F. S. (Mater. Res. Soc. Symp. Proc. V–8, Pittsburgh, PA, 1993), p. 67.Google Scholar
33.Maniguet, L., Ignat, M., Dupeux, M., Bacmann, J. J., and Normandon, Ph., in Materials Reliability in Microelectronics IV, edited by Borgesen, P., Coburn, J. C., Sanchez, J. E. Jr., Rodbell, K. P., and Filter, W. F., (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 241.Google Scholar
34.Besser, P. R., Brennan, S., and Bravman, J. C., J. Mater. Res. 9, 13 (1994).Google Scholar
35.Kuschke, W. M. and Arzt, E., Appl. Phys. Lett. 64, 1097 (1994).CrossRefGoogle Scholar
36.Besser, P. R., Marieb, T. N., Lee, J., Flinn, P. A., and Bravman, J. C., J. Mater. Res. 11, 1097 (1996).CrossRefGoogle Scholar
37.Vinci, R. P. and Vlassak, J. J., Annu. Rev. Mater. Sci. 26, 431 (1996).CrossRefGoogle Scholar
38.Yamamoto, N. and Sakata, S., Jpn. J. Appl. Phys. 34, L664 (1995).CrossRefGoogle Scholar