Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T17:23:48.976Z Has data issue: false hasContentIssue false

Evolution of multilayered scale structures during high temperature oxidation of ZrSi2

Published online by Cambridge University Press:  20 October 2016

Hwasung Yeom
Affiliation:
Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
Ben Maier
Affiliation:
Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
Robert Mariani
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho 83402, USA
David Bai
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho 83402, USA
Kumar Sridharan*
Affiliation:
Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The oxidation behavior of bulk ZrSi2 at 700, 1000, and 1200 °C in ambient air has been investigated. Parabolic to cubic oxide layer growth kinetics was confirmed by weight gain measurements and the average oxide layer thickness was 470 nm, 6.7 µm, and 37 µm at 700 °C, 1000 °C, and 1200 °C, respectively, after 5 h oxidation tests. Evolution of compositionally modulated nano/micro structures was confirmed in the oxide layer. At 700 °C, Si diffusion resulted in discontinuous Si-rich oxide phases in amorphous Zr–Si–O matrix. At 1000 °C, complex multilayered structures such as fine and coarse irregular spinodal structures, wavy Si-rich oxide, and Si-rich islands evolved. At 1200 °C, additional nucleation of nanoscale ZrO2 particulate phase was observed. The spinodal structures were confirmed to be crystalline ZrO2 and amorphous SiO2, and the thermodynamic driving force for phase evolution has been explained by extension of liquid miscibility gap in the binary ZrO2–SiO2 phase diagram.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Yanchun Zhou

References

REFERENCES

Sabol, G., Comstock, R.J., Weiner, R., Larouere, P., and Stanutz, R.: In-reactor corrosion performance of ZIRLO and Zircaloy-4. In Zirconium in the Nuclear Industry: Tenth International Symposium (American Society for Testing and Materials, Philadelphia, 1994); p. 724.CrossRefGoogle Scholar
Pint, B.A., Terrani, K.A., Brady, M.P., Cheng, T., and Keiser, J.R.: High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments. J. Nucl. Mater. 440, 420 (2013).CrossRefGoogle Scholar
Steinbrück, M.: Prototypical experiments relating to air oxidation of Zircaloy-4 at high temperatures. J. Nucl. Mater. 392, 531 (2009).CrossRefGoogle Scholar
Steinbrück, M. and Böttcher, M.: Air oxidation of Zircaloy-4, M5® and ZIRLO™ cladding alloys at high temperatures. J. Nucl. Mater. 414, 276 (2011).CrossRefGoogle Scholar
Baek, J.H. and Jeong, Y.H.: Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J. Nucl. Mater. 372, 152 (2008).CrossRefGoogle Scholar
Cheng, T., Keiser, J.R., Brady, M.P., Terrani, K.A., and Pint, B.A.: Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure. J. Nucl. Mater. 427, 396 (2012).CrossRefGoogle Scholar
Ben-Belgacem, M., Richet, V., Terrani, K.A., Katoh, Y., and Snead, L.L.: Thermo-mechanical analysis of LWR SiC/SiC composite cladding. J. Nucl. Mater. 447, 125 (2014).CrossRefGoogle Scholar
Terrani, K.A., Zinkle, S.J., and Snead, L.L.: Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J. Nucl. Mater. 448, 420 (2014).CrossRefGoogle Scholar
Yamamoto, Y., Pint, B., Terrani, K.A., Field, K., Maloy, S., and Gan, J.: Progress towards the development of nuclear grade FeCrAl fuel cladding. In TopFuel 2015, Vol. 467 (European Nuclear Society, Zurich, 2015); p. 703.Google Scholar
Idarraga-trujillo, I., Le flem, M., Brachet, J-C., Le Saux, M., Hamon, D., and Muller, S.: Assessment at CEA of coated nuclear fuel cladding for LWRs with increased margins in LOCA and beyond LOCA conditions. In Proc. TopFuel 2013 (American Nuclear Society, Charlotte, 2013); p. 860.Google Scholar
Kim, H-G., Kim, I-H., Jung, Y-I., Park, D-J., Park, J-Y., and Koo, Y-H.: Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating. J. Nucl. Mater. 465, 531 (2015).CrossRefGoogle Scholar
Maier, B.R., Garcia-Diaz, B.L., Hauch, B., Olson, L.C., Sindelar, R.L., and Sridharan, K.: Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding. J. Nucl. Mater. 466, 712 (2015).CrossRefGoogle Scholar
Sung, J.H., Kim, T.H., and Kim, S.S.: Fretting damage of TiN coated Zircaloy-4 tube. Wear 250, 658 (2001).CrossRefGoogle Scholar
Mitra, R.: Mechanical behaviour and oxidation resistance of structural silicides. Int. Mater. Rev. 51, 13 (2006).CrossRefGoogle Scholar
Sharif, A.A.: High-temperature oxidation of MoSi2 . J. Mater. Sci. 45, 865 (2010).CrossRefGoogle Scholar
Knittel, S., Mathieu, S., and Vilasi, M.: The oxidation behaviour of uniaxial hot pressed MoSi2 in air from 400 to 1400 °C. Intermetallics 19, 1207 (2011).CrossRefGoogle Scholar
Rosenkranz, R. and Frommeyer, G.: Microstructures and properties of the refractory compounds TiSi2 and ZrSi2 . Z. Metallkd. 83, 685 (1992).Google Scholar
Strydom, W.J., Lombaard, J.C., and Pretorius, R.: Thermal oxidation of the silicides CoSi2, CrSi2, NiSi2, PtSi2, TiSi2 and ZrSi2 . Thin Solid Films 131, 215 (1985).CrossRefGoogle Scholar
Pérez, P., López, M., Jiménez, J., and Adeva, P.: Oxidation behaviour of Al-alloyed ZrSi2 at 700 °C. Intermetallics 8, 1393 (2000).CrossRefGoogle Scholar
Pérez, P.: Oxidation behavior of Al-alloyed ZrSi2 . Oxid. Met. 56, 163176 (2001).CrossRefGoogle Scholar
Geßwein, H., Pfrengle, A., Binder, J.R., and Haußelt, J.: Kinetic model of the oxidation of ZrSi2 powders. J. Therm. Anal. Calorim. 91, 517 (2007).CrossRefGoogle Scholar
Gosset, D. and Le Saux, M.: In-situ x-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperature. J. Nucl. Mater. 458, 245 (2014).CrossRefGoogle Scholar
Murarka, S.P.: Silicides for VLSI Applications, 1st ed. (Academic Press, Cambridge, 2012).Google Scholar
Becker, S., Rahmel, A., and Schutze, M.: Oxidation of TiSi2 and MoSi2 . Solid State Ionics 53–56, 280 (1992).CrossRefGoogle Scholar
Liu, Y., Shao, G., and Tsakiropoulos, P.: On the oxidation behaviour of MoSi2 . Intermetallics 9, 125 (2001).CrossRefGoogle Scholar
Khanna, A.S.: Introduction to high temperature oxidation and corrosion. 1st ed. (ASM International, Materials Park, 2002).Google Scholar
Lafatzis, D. and Mergia, K.: Oxidation behaviour of Si wafer substrates in air. J. Appl. Phys. 114, 1 (2013).CrossRefGoogle Scholar
Lie, L.N., Tiller, W.A., and Saraswat, K.C.: Thermal oxidation of silicides. J. Appl. Phys. 56, 2127 (1984).CrossRefGoogle Scholar
Berztiss, D.A., Cerchiara, R.R., Gulbransen, E.A., Pettit, F.S., and Meier, G.H.: Oxidation of MoSi2 and comparison with other silicide materials. Mater. Sci. Eng., A 155, 165 (1992).CrossRefGoogle Scholar
Urbanic, V.F. and Heidrick, T.R.: High-temperature oxidation of Zircaloy-2 and Zircaloy-4 in steam. J. Nucl. Mater. 75, 251 (1978).CrossRefGoogle Scholar
Naumkin, A., Kraut-Vass, A., Gaarenstroom, S., and Powell, C.: Nist x-ray photoelectron spectroscopy database. (2012). Available at: http://srdata.nist.gov/xps/Default.aspx.Google Scholar
Guittet, M.J., Crocombette, J.P., and Gautier-Soyer, M.: Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 125117 (2001).CrossRefGoogle Scholar
Dementjev, A.P.: Altered layer as sensitive initial chemical state indicator∗. J. Vac. Sci. Technol., A 12, 423 (1994).CrossRefGoogle Scholar
Rayner, G., Therrien, R., and Lucovsky, G.: The structure of plasma-deposited and annealed pseudo-binary ZrO2–SiO2 alloys. Mater. Res. Soc. Symp. Proc. 611, C1.3.1 (2000).CrossRefGoogle Scholar
Lucovsky, G. and Rayner, G.B.: Microscopic model for enhanced dielectric constants in low concentration SiO2-rich noncrystalline Zr and Hf silicate alloys. Appl. Phys. Lett. 77, 2912 (2000).CrossRefGoogle Scholar
Schwettmann, F., Graff, R., and Kolodney, M.: Mechanism of the oxidation of titanium disilicide. J. Electrochem. Soc. 118, 1973 (1971).CrossRefGoogle Scholar
Tallman, D.J., Yang, J., Pan, L., Anasori, B., and Barsoum, M.W.: Reactivity of Zircaloy-4 with Ti3SiC2 and Ti2AlC in the 1100–1300 °C temperature range. J. Nucl. Mater. 460, 122 (2015).CrossRefGoogle Scholar
Roy, S. and Paul, A.: Growth of hafnium and zirconium silicides by reactive diffusion. Mater. Chem. Phys. 143, 1309 (2014).CrossRefGoogle Scholar
Laughlin, D.E. and Soffa, W.: Spinodal structures. In ASM Handbook, Vol. 9 (ASM International, Materials Park, 1985); p. 652.Google Scholar
Kim, H. and McIntyre, P.C.: Spinodal decomposition in amorphous metal-silicate thin films: Phase diagram analysis and interface effects on kinetics. J. Appl. Phys. 92, 5094 (2002).CrossRefGoogle Scholar
Stemmer, S., Chen, Z., Levi, C., Lysaght, P., Foran, B., and Gisby, J.: Application of metastable phase diagrams to silicate thin films for alternative gate dielectrics. Jpn. J. Appl. Phys., Part 1 42, 3593 (2003).CrossRefGoogle Scholar
Porter, D. and Easterling, K.: Phase Transformations in Metals and Alloys, 1st ed. (Van Nostrand Reinhold, New York, 1981).Google Scholar
Butterman, W.C. and Foster, W.R.: Zircon stability and the ZrO2–SiO2 phase diagram. Am. Mineral. 52, 880 (1967).Google Scholar
Itoh, T.: Formation of polycrystalline zircon (ZrSiO4) from amorphous silica and amorphous zirconia. J. Cryst. Growth 125, 223 (1992).CrossRefGoogle Scholar
Veytizou, C., Quinson, J.F., Valfort, O., and Thomas, G.: Zircon formation from amorphous silica and tetragonal zirconia: Kinetic study and modelling. Solid State Ionics 139, 315 (2001).CrossRefGoogle Scholar
Ramani, S., Subbarao, E., and Gowhale, K.: Kinetics of zircon synthesis. J. Am. Ceram. Soc. 52, 619 (1969).CrossRefGoogle Scholar
Kaiser, A., Lobert, M., and Telle, R.: Thermal stability of zircon (ZrSiO4). J. Eur. Ceram. Soc. 28, 2199 (2008).CrossRefGoogle Scholar