Published online by Cambridge University Press: 31 January 2011
Sequential pulsed-laser irradiation of silicon in SF6 atmospheres induced the formation of an ensemble of microholes and microcones. Profilometry measurements and direct imaging with an intensifying charge-coupled device camera were used to study the evolution of this microstructure and the laser-generated plume. Both the partial pressure of SF6 and the total pressure of an SF6-inert gas mixture strongly influenced the maximum height that the microcones attained over the initial surface. The cones first grew continuously with the number of pulses, reached a maximum, and then began to recede as the number of laser pulses increased further. The growth of the cones was closely connected with the evolution of the laser-generated plume.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.