Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T11:58:22.008Z Has data issue: false hasContentIssue false

Equilibrium phase diagram for the system PbO-CaO-CuO

Published online by Cambridge University Press:  31 January 2011

Hitoshi Kitaguchi
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Okayama University, Okayama 700, Japan
Jun Takada
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Okayama University, Okayama 700, Japan
Kiichi Oda
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Okayama University, Okayama 700, Japan
Yoshinari Miura
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Okayama University, Okayama 700, Japan
Get access

Abstract

In order to obtain essential information on the formation process of the high-Tc phase in the Bi, Pb-Sr-Ca-Cu-O system, phase equilibria in the system PbO-CaO-CuO have been studied, mainly by x-ray diffraction analysis and thermal analysis. Temperature versus composition diagrams were established for the systems PbO-CuO(Cu2O) and PbO(PbO2)–CaO in air. Three invariant points were detected in these systems: a eutectic reaction (PbO + Ca2PbO4 = L) at 847 ± 6°C, a peritectic reaction (Ca2PbO4 = L + CaO) at 980 ± 2°C, and a eutectic reaction (PbO + CuO = L) at 789 ± 3°C. For the system PbO(PbO2)-CaO-CuO, subsolidus phase equilibrium in air was established. The liquidus was also examined at 780, 800, and 820°C, and a ternary (PbO-Ca2PbO4-CuO) eutectic point was detected at 772 ± 6°C.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, Y., Tomii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).CrossRefGoogle Scholar
2Ikeda, Y., Takano, M., Hiroi, Z., Oda, K., Kitaguchi, H., Takada, J., Miura, Y., Takeda, Y., Yamamoto, O., and Mazaki, H., Jpn. J. Appl. Phys. 27, L2067 (1988).CrossRefGoogle Scholar
3Oda, K., Kitaguchi, H., Takada, J., Osaka, A., Miura, Y., Ikeda, Y., Takano, M., Bando, Y., Yamamoto, N., Oka, Y., Tomii, Y., Unezaki, T., Takeda, Y., and Mazaki, H., J. Jpn. Soc. Powder and Powder Metallurgy 35, 424 (1988) (in Japanese).CrossRefGoogle Scholar
4Takada, J., Kitaguchi, H., Oda, K., Osaka, A., Miura, Y., Ikeda, Y., Takano, M., Oka, Y., Yamamoto, N., Tomii, Y., and Takeda, Y., J. Jpn. Soc. Powder and Powder Metallurgy 35, 1003 (1988) (in Japanese).CrossRefGoogle Scholar
5Ikeda, Y., Ito, H., Hiroi, Z., Takano, M., Kitaguchi, H., Takada, J., Oda, K., Miura, Y., Takeda, Y., and Mazaki, H., J. Jpn. Soc. Powder and Powder Metallurgy 35, 965 (1988) (in Japanese).CrossRefGoogle Scholar
6Hatano, T., Aota, K., Ikeda, S., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 27, L2055 (1988).CrossRefGoogle Scholar
7Kijima, N., Endo, H., Tsuchiya, J., Sumiyama, A., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 27, L1852 (1988).CrossRefGoogle Scholar
8Uzumaki, T., Yamanaka, K., Kamehara, N., and Niwa, K., Jpn. J. Appl. Phys. 28, L75 (1989).CrossRefGoogle Scholar
9Conflant, P., Boibin, J. C., and Thomas, D., J. Solid State Chem. 18, 133 (1976).CrossRefGoogle Scholar
10Cassedanne, J. and Campelo, C. P., An. Acad. Brasil. Cienc. 38, 35 (1966).Google Scholar
11Biefield, R. M. and White, S. S., J. Am. Ceram. Soc. 64, 182 (1981).CrossRefGoogle Scholar
12Kuxmann, U. and Fischer, P., Erzmetall 27, 533 (1974).Google Scholar
13Levy-Clement, Cl. and Michel, A., Ann. Chim. 2, 63 (1975).Google Scholar
14Levy-Clement, Cl., Morgenstern-Badarau, I., and Michel, A., Mater. Res. Bull. 7, 35 (1972).CrossRefGoogle Scholar
15Gebhardt, E. and Obrowski, W., Z. Metallkd. 45, 332 (1954).Google Scholar
16Gadalla, A. M. M. and White, J., Trans. Brit. Ceram. Soc. 65, 181 (1966).Google Scholar
17Teske, C. L. and Müller-Buschbaum, H-K., Z. Anorg. Allg. Chem. 379, 234 (1970).CrossRefGoogle Scholar
18Ikeda, Y., Oue, Y., Inaba, K., Bando, Y., and Takano, M., J. Jpn. Soc. Powder and Powder Metallurgy 35, 405 (1988) (in Japanese).CrossRefGoogle Scholar
19Ikeda, Y., Ito, H., Shimomura, S., Oue, Y., Inaba, K., Hiroi, Z., and Takano, M., Physica C 159, 93 (1989).CrossRefGoogle Scholar
20Takada, J., Ohno, M., Kitaguchi, H., Oda, K., Osaka, A., Miura, Y., Ikeda, Y., Takano, M., and Bando, Y., J. Jpn. Soc. Powder and Powder Metallurgy 35, 952 (1988) (in Japanese).CrossRefGoogle Scholar
21Takada, J., Kitaguchi, H., Kuniya, H., Sato, K., Oda, K., Osaka, A., Miura, Y., Ikeda, Y., Takano, M., Bando, Y., Kanno, R., and Takeda, Y., J. Jpn. Soc. Powder and Powder Metallurgy 36, 533 (1989) (in Japanese).CrossRefGoogle Scholar
22Teske, C. L. and Müller-Buschbaum, H-K., Z. Anorg. Allg. Chem. 370, 134 (1969).CrossRefGoogle Scholar